Supply Chain Management (MDES674) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Supply Chain Management MDES674 3 0 0 3 5
Pre-requisite Course(s)
Consent of the instructor
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course intends to make the students familiar with supply chain management and logistics concepts and prepare them to develop the ability to formulate the models of these systems and analyze results obtained with such models.
Course Learning Outcomes The students who succeeded in this course;
  • To be familiar with supply chain management and logistics concepts. Developing the ability to formulate models of such systems and analyze results obtained with such models. To understand the important issues in supply chain system design and operation. Acquaintance of students information systems that support supply chain and logistics systems
Course Content Supply chain management purposes and processes; supply chain design, evaluation and measurement models; trends in strategic operations, procurement, and logistics applications within the supply chain.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Overview of supply-chain network optimization models Related pages of the textbook and other sources
2 Developments in information technology supporting supply chain analytics Related pages of the textbook and other sources
3 Analysis of postponement strategies using optimization models Related pages of the textbook and other sources
4 Data-driven methods for sales and operations planning Related pages of the textbook and other sources
5 Net profit maximization using revenue models that are price and location sensitive Related pages of the textbook and other sources
6 High-performance demand forecasting Related pages of the textbook and other sources
7 Flowcasting the retail supply chain Related pages of the textbook and other sources
8 Overview of market response models Related pages of the textbook and other sources
9 Integrating supply chain and marketing strategies in consumer products companies Related pages of the textbook and other sources
10 Case study: Optimizing initial buy decisions in a retailing company Related pages of the textbook and other sources
11 Case study: Dynamic sourcing in a container rental company Related pages of the textbook and other sources
12 Case study: Post-merger consolidation in a food products company Related pages of the textbook and other sources
13 Beyond supply chain optimization to enterprise optimization Related pages of the textbook and other sources
14 Future perspectives Related pages of the textbook and other sources
15 Overall review -
16 Final exam -

Sources

Course Book 1. Shapiro, J., Modelling the Supply Chain, Duxbury, 2001
Other Sources 2. Simchi Levi et.al., “Designing and Managing Supply Chain, McGraw-Hill Higher Education, Second Edition, 2003
3. Bowersox D. J., D. J. Closs And M. B. Cooper, Supply Chain Logistics Management, Mcgraw-Hill Second Edition, 2007
4. Chan C. K., And H.W.J. Lee Successfull Strategies In Supply Chain Management, Idea Publishing 2005

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 8 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Ability to apply the acquired knowledge in mathematics, science and engineering
2 Ability to identify, formulate and solve complex engineering problems
3 Ability to accomplish the integration of systems
4 Ability to design, develop, implement and improve complex systems, components, or processes
5 Ability to select/develop and use suitable modern engineering techniques and tools
6 Ability to design/conduct experiments and collect/analyze/interpret data
7 Ability to function independently and in teams
8 Ability to make use of oral and written communication skills effectively
9 Ability to recognize the need for and engage in life-long learning
10 Ability to understand and exercise professional and ethical responsibility
11 Ability to understand the impact of engineering solutions
12 Ability to have knowledge of contemporary issues

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 1 2 2
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 5 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 128