General Physics I (PHYS101) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
General Physics I PHYS101 3 2 0 4 6
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The goal of this course is, by providing the calculus-based concepts of mechanics, to establish the relationships between mathematics, physics and engineering and apply the physical science to define and solve engineering problems.
Course Learning Outcomes The students who succeeded in this course;
  • To understand and apply solving problems of mechanics that lead to the understanding the fundamentals of related fields in engineering sciences.
  • To understand the conceptual topics of mechanics and apply to engineering problems.
  • To apply and integrate the basic science and the principles of engineering science.
  • To enhance students` ability and motivation to solve unsolved problems in various fields
  • To provide a useful introduction to the subject for engineering students to give them the opportunity to establish conceptual relations between mechanics and a wide range of topics of engineering science
Course Content Measurement, motion along a straight line, vectors, motion in two and three dimensions, force and motion I, force and motion II, kinetic energy and work, potential energy and conservation of energy, center of mass and linear momentum, rotation, rolling, torque, and angular momentum, equilibrium and elasticity.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction, Measurement, Estimating Physics for Scientists & Engineers with Modern Physics, Douglas C. Giancoli, Chapter 1 and Phys101 Laboratory Manual Introduction
2 Kinematics in One Dimension Douglas C. Giancoli, S. 27-38
3 Kinematics in One Dimension Douglas C. Giancoli, S.39-49
4 Kinematics in Two and Three Dimensions; Vectors Douglas C. Giancoli, S. 65-76
5 Kinematics in Two and Three Dimensions; Vectors Douglas C. Giancoli, S. 76-85
6 Newton’s Laws of Motion Douglas C. Giancoli, S.101-119
7 Using Newton’s Laws: Friction, Circular Motion Douglas C. Giancoli, S.134-151
8 Using Newton’s Laws: Friction, Circular Motion Douglas C. Giancoli, S.141-153
9 Work and Energy Douglas C. Giancoli, S.193-206
10 Conservation of Energy Douglas C. Giancoli, S.217-239
11 Linear Momentum Douglas C. Giancoli, S.252-273
12 Rotational Motion Douglas C. Giancoli, S.290-305
13 Rotational Motion Douglas C. Giancoli, S.305-317
14 Angular Momentum; General Rotation Douglas C. Giancoli, S.332-350
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. Physics for Scientists & Engineers with Modern Physics, Douglas C. Giancoli (4th edition), Pearson (2014)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 9 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and computing fields; ability to apply theoretical and practical knowledge of these fields in solving engineering problems related to information systems. X
2 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 Ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose.
4 Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in information systems engineering applications; ability to use information technologies effectively. X
5 Ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the information systems discipline. X
6 Ability to work effectively in inter/inner disciplinary teams; ability to work individually. X
7 a. Effective oral and written communication skills in Turkish; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. b. Knowledge of at least one foreign language; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. X
8 Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development.
9 a. Ability to behave according to ethical principles, awareness of professional and ethical responsibility. b. Knowledge of the standards utilized in information systems engineering applications.
10 a. Knowledge on business practices such as project management, risk management and change management. b. Awareness about entrepreneurship, and innovation. c. Knowledge on sustainable development.
11 a. Knowledge of the effects of information systems engineering applications on the universal and social dimensions of health, environment, and safety. b. Awareness of the legal consequences of engineering solutions.
12 An ability to design, develop, operate and manage cost-effective information systems by assembling the most appropriate software and hardware, arranging appropriate personnel, and defining necessary procedures, in order to enable public and private sector organizations to do their jobs more effectively and be more competitive.
13 Skills in finding solutions to business problems using information technologies.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 14 2 28
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 153