ECTS - Calculus II
Calculus II (MATH152) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Calculus II | MATH152 | 2. Semester | 4 | 2 | 0 | 5 | 7 |
Pre-requisite Course(s) |
---|
MATH151 |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The course is designed as a continuation of MATH151 Calculus I and aims to give the students the computational skills in series, analytic geometry and multi-variable differential and integral calculus to handle engineering problems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Infinite series, vectors in the plane and polar coordinates, vectors and motions in space, multivariable functions and their derivatives, multiple integrals: double integrals, areas, double integrals in polar coordinates, triple integrals in rectangular, cylindrical and spherical coordinates, line integrals, Independence of path,Green's theorem. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 9.1. Sequences and Convergence, 9.2. Infinite Series, | pp:495-409 |
2 | 9.3. Convergence Tests for Positive Series (The Integral Test, Comparison Tests, The Ratio and Root Tests), 9.4. Absolute and Conditional Convergence, | pp:510-526 |
3 | 9.5. Power Series, 9.6. Taylor and Maclaurin Series (Convergence of Taylor Series; Error Estimates), | pp:526-545 |
4 | 9.7. Applications of Taylor and Maclaurin Series, 10.1. Analytic Geometry in Three Dimensions, | pp:546-549 pp:562-568 |
5 | 10.2. Vectors, 10.3. The Cross Product in 3-Space, | pp:568-585 |
6 | 10.4. Planes and Lines, 10.5. Quadric Surfaces, | pp:585-596 |
7 | Midterm, | |
8 | 12.1. Functions of Several Variables, 12.2. Limits and Continuity, | pp:669-681 |
9 | 12.3. Partial Derivatives, 12.4. Higher Order Derivatives, 12.5. The Chain Rule, | pp:681-703 |
10 | 12.6. Linear Approximations, Differentiability, and Differentials, 12.7. Gradient and Directional Derivatives, 12.8. Implicit Functions, | pp:703-705 pp:706-707 pp:714-726 |
11 | 13.1. Extreme Values, 13.2. Extreme Values of Functions Defined on Restricted Domains, | pp:743-754 |
12 | 13.3. Lagrange Multipliers, 14.1. Double Integrals, | pp:756-760 pp:790-796 |
13 | 14.2. Iteration of Double Integrals in Cartesian Coordinates, 14.4. Double Integrals in Polar Coordinates, | pp:796-802 pp:808-812 |
14 | 14.5. Triple Integrals, 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), | pp:818-830 |
15 | 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), | pp:824-830 |
16 | Final Exam |
Sources
Course Book | 1. Calculus: A complete Course, R. A. Adams, C. Essex, 7th Edition; Pearson Addison Wesley |
---|---|
Other Sources | 2. Thomas’ Calculus Early Transcendentals, 11th Edition.( Revised by M. D. Weir, J.Hass and F. R. Giardano; Pearson , Addison Wesley) |
3. Calculus: A new horizon, Anton Howard, 6th Edition; John Wiley & Sons | |
4. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall | |
5. Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | |
Supportive Courses | X |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems. | X | ||||
2 | To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. | |||||
4 | To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively. | |||||
5 | Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering. | |||||
6 | Can work effectively in disciplinary and multidisciplinary teams; can work individually. | |||||
7 | a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language. | |||||
8 | To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously. | |||||
9 | a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications. | |||||
10 | a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development. | |||||
11 | a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | |||
Application | 16 | 2 | 32 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 18 | 18 |
Total Workload | 176 |