Reliability (IE429) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Reliability IE429 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Serkan Eryılmaz
Course Assistants
Course Objectives This course aims to provide students with reliability analysis tools and process control techniques for designing and operating systems at high reliability and quality levels.
Course Learning Outcomes The students who succeeded in this course;
  • Ability to describe the importance of reliability and quality in engineering.
  • Ability to compute and evaluate system reliability based on component reliabilities.
  • Ability to use effective probabilistic and statistical techniques for evaluating engineering systems and production processes.
Course Content The concepts and tools of system reliability, the methods for evaluating reliability of systems, and some reliability optimization problems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 The concept of reliability and its importance in engineering
2 Review of Probability
3 Basic reliability Math
4 Reliability concepts and tools
5 Methods for system reliability evaluation
6 Recursive reliability formulae
7 Lifetime probability models
8 Dynamic reliability analysis
9 Estimation of reliability
10 Midterm
11 Repairable system models
12 Multi-state systems
13 Reliability optimization problems
14 Reliability optimization problems (cont.)
15 Final Examination Period
16 Final Examination Period

Sources

Course Book 1. “Optimal Reliability Modeling: Principles and Applications” by W. Kuo and M. J. Zuo, John Wiley, 2003.
Other Sources 2. Applied Reliability and Quality, Fundamentals, Methods and Procedures by Dhillon, B.S., Springer, 2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 30
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and computing fields; ability to apply theoretical and practical knowledge of these fields in solving engineering problems related to information systems. X
2 Ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose.
3 Ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; ability to apply modern design methods for this purpose.
4 Ability to develop, select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in information systems engineering applications; ability to use information technologies effectively.
5 Ability to gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the information systems discipline.
6 Ability to work effectively in inter/inner disciplinary teams; ability to work individually.
7 a. Effective oral and written communication skills in Turkish; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions. b. Knowledge of at least one foreign language; ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and receive clear and understandable instructions.
8 Recognition of the need for lifelong learning; the ability to access information and follow recent developments in science and technology with continuous self-development.
9 a. Ability to behave according to ethical principles, awareness of professional and ethical responsibility. b. Knowledge of the standards utilized in information systems engineering applications.
10 a. Knowledge on business practices such as project management, risk management and change management. b. Awareness about entrepreneurship, and innovation. c. Knowledge on sustainable development.
11 a. Knowledge of the effects of information systems engineering applications on the universal and social dimensions of health, environment, and safety. b. Awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project 1 7 7
Report
Homework Assignments 5 2 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 8 8
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125