ECTS - Fundamentals of the Internet of Things

Fundamentals of the Internet of Things (ISE434) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fundamentals of the Internet of Things ISE434 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
  • Identify basics of IoT
  • Describe IoT architecture
  • Recognize cloud usage for IoT applications
  • Recognize fog/edge computing for IoT
  • Develop IoT applications with Arduino
Course Content Basics of IoT, IoT architecture, technologies and tools for IoT environment, IoT programming, IoT communication technologies, cloud for IoT applications and analysis, IoT data analytics, edge and fog computing, security management in IOT.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basics of IoT Course notes
2 Basics of IoT Course notes
3 IoT Architecture Course notes
4 IoT Mimarisi Course notes
5 Sensor Netwoks Course notes
6 IoT Programming Course notes
7 IoT Programming Course notes
8 IoT Programming Course notes
9 IoT Communication Technologies Course notes
10 IoT Communication Technologies Course notes
11 Edge and Fog Computing Course notes
12 IoT Uygulamaları için Bulut Kullanımını Course notes
13 Cloud for IoT Applications Course notes
14 IoT’de Güvenlik Yönetimi Course notes
15 Final Exam
16 Final Exam

Sources

Course Book 1. Ders notları

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application 1 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 5
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury 1 40
Toplam 7 85
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems.
2 To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose.
4 To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively. X
5 Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering. X
6 Can work effectively in disciplinary and multidisciplinary teams; can work individually.
7 a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language.
8 To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously.
9 a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications.
10 a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development.
11 a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 4 5 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 150