ECTS - Machine Learning for Engineers

Machine Learning for Engineers (CMPE468) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Machine Learning for Engineers CMPE468 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course objective is to provide an introduction to Machine Learning concepts, algorithms, and their applications in engineering areas without requiring advanced calculus, linear algebra, and probability theory, and the ability to work within interdisciplinary teams for developing a project for which the teams will be formed from different disciplines.
Course Learning Outcomes The students who succeeded in this course;
  • Describe fundamental concepts and algorithms of machine learning and their applications
  • Evaluate the machine learning models and parameter tuning
  • Apply machine learning algorithms to particular engineering applications
  • Work within interdisciplinary teams for developing a project
Course Content Artificial intelligence, machine learning, supervised and unsupervised learning, binary classification, multiclass classification, regression, clustering, model evaluation.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Why Machine Learning? A First Application: Classifying Iris Species Ch.1
2 Supervised Learning: Classification and Regression Ch. 2.1
3 k-Nearest Neighbors Ch. 2.2
4 Linear Models Ch. 2.3
5 Naive Bayes Classifiers Ch. 2.4
6 Decision Trees Ch. 2.5
7 Random Trees Ch. 2.6
8 Support Vector Machines Ch. 2.7
9 Unsupervised Learning Ch. 3.1
10 Clustering: K-means Ch. 3.5
11 Model Evaluation: cross-validation, leave-one-out, grid search Ch 5.1
12 Evaluation Metrics and Scoring Ch. 5.2
13 Project Presentations
14 Project Presentations

Sources

Course Book 1. Introduction to Machine Learning with Python, A Guide for Data Scientists by Andreas C. Müller and Sarah Guido, O’Reilly Media, Inc, October 2016
Other Sources 3. Machine Learning 101, Data Science. Nov 26, 2018
4. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems / Aurelien Geron.
5. Introduction to Machine Learning, Ethem Alpaydin. MIT Press, 2014.
6. Orange web site, https://orange.biolab.si/

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems.
2 To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose.
4 To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively.
5 Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering.
6 Can work effectively in disciplinary and multidisciplinary teams; can work individually. X
7 a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language.
8 To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously.
9 a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications.
10 a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development.
11 a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 115