ECTS - Introduction to Optimization
Introduction to Optimization (MATH490) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Optimization | MATH490 | Area Elective | 3 | 0 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To give a basic knowledge of optimization in mathematics, provide an introduction to the applications, theory, and algorithms of linear and nonlinear optimization |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fundamentals of optimization, representation of linear constraints, linear programming, Simplex method, duality and sensitivity, basics of unconstrained optimization, optimality conditions for constrained problems. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | I. Basics Chapter 1. Optimization Models 1.1. Introduction 1.3. Linear Equations 1.4. Linear Optimization | Related sections in Ref. [1] |
2 | 1.5. Least-Squares Data Fitting 1.6. Nonlinear Optimization 1.7. Optimization Applications | Related sections in Ref. [1] |
3 | Chapter 2. Fundamentals of Optimization 2.1. Introduction 2.2. Feasibility and Optimality 2.3. Convexity 2.4. The General Optimization Algorithm | Related sections in Ref. [1] |
4 | 2.5. Rates of Convergence 2.6. Taylor Series 2.7. Newton’s Method for Nonlinear Equations and Termination | Related sections in Ref. [1] |
5 | Chapter 3. Representation of Linear Constraints 3.1. Basic Concepts 3.2. Null and Range Spaces | Related sections in Ref. [1] |
6 | II Linear Programming Chapter 4. Geometry of Linear Programming 4.1. Introduction 4.2. Standard Form 4.3. Basic Solutions and Extreme Points | Related sections in Ref. [1] |
7 | Chapter 5. The Simplex Method 5.1. Introduction 5.2. The Simplex Method | Related sections in Ref. [1] |
8 | Chapter 6. Duality and Sensitivity 6.1. The Dual Problem 6.2. Duality Theory | Related sections in Ref. [1] |
9 | III Unconstrained Optimization Chapter 11. Basics of Unconstrained Optimization 11.1. Introduction 11.2. Optimality Conditions 11.3. Newton’s Method for Minimization | Related sections in Ref. [1] |
10 | 11.4. Guaranteeing Descent 11.5. Guaranteeing Convergence: Line Search Methods | Related sections in Ref. [1] |
11 | IV Nonlinear Optimization Chapter 14. Optimality Conditions for Constrained Problems 14.1. Introduction 14.2. Optimality Conditions for Linear Equality Constraints | Related sections in Ref. [1] |
12 | 14.3. The Lagrange Multipliers and the Lagrangian Function 14.4. Optimality Conditions for Linear Inequality Constraints | Related sections in Ref. [1] |
13 | 14.5. Optimality Conditions for Nonlinear Constraints | Related sections in Ref. [1] |
14 | Review | |
15 | Review | |
16 | Final |
Sources
Course Book | 1. Igor Griva, Stephen G. Nash, Ariela Sofer, Linear and Nonlinear Optimization Second Edition, SIAM, 2009 |
---|---|
2. Edwin K.P. Chong, Stanislaw H. Zak, An Introduction to Optimization, Third Edition, John Wiley and Sons, 2008 | |
3. Amir Beck, Introduction to Nonlinear Optimization: Theory, Algorithms and Applications with MATLAB, SIAM, 2014. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 4 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 7 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gain sufficient knowledge in mathematics, science and computing; be able to use theoretical and applied knowledge in these areas to solve engineering problems related to information systems. | |||||
2 | To be able to identify, define, formulate and solve complex engineering problems; to be able to select and apply appropriate analysis and modeling methods for this purpose. | |||||
3 | Designs a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. | |||||
4 | To be able to develop, select and use modern techniques and tools required for the analysis and solution of complex problems encountered in information systems engineering applications; to be able to use information technologies effectively. | |||||
5 | Designs and conducts experiments, collects data, analyzes and interprets results to investigate complex engineering problems or research topics specific to the discipline of information systems engineering. | |||||
6 | Can work effectively in disciplinary and multidisciplinary teams; can work individually. | |||||
7 | a. Communicates effectively both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. b. Knows at least one foreign language. | |||||
8 | To be aware of the necessity of lifelong learning; to be able to access information, to be able to follow developments in science and technology and to be able to renew himself/herself continuously. | |||||
9 | a. Acts in accordance with the principles of ethics, gains awareness of professional and ethical responsibility. b. Gains knowledge about the standards used in information systems engineering applications. | |||||
10 | a. Gains knowledge about business life practices such as project management, risk management and change management. b. Gains awareness about entrepreneurship and innovation. c. Gains knowledge about sustainable development. | |||||
11 | a. To be able to acquire knowledge about the universal and social effects of information systems engineering applications on health, environment and safety and the problems of the era reflected in the field of engineering. b. Gains awareness of the legal consequences of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 3 | 42 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 4 | 2 | 8 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 16 | 32 |
Prepration of Final Exams/Final Jury | 1 | 20 | 20 |
Total Workload | 150 |