ECTS - Software Measurement
Software Measurement (SE577) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Software Measurement | SE577 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses Taken From Other Departments |
Course Level | Natural & Applied Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to introduce foundations of measurement theory, core concepts in measurement process and to equip students with working knowledge on models, measures and practices used in software engineering. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Measurement theory; measure design and validation; measurement requirements; measurement process; techniques and tools for software measurement; measurement frameworks; measurement management; project, organization, product, service and quality measurement; ISO measurement standards; software estimation; software measurement repositories. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Measurement Theory | Abran, Fenton |
2 | Measurement Process I | Abran, Fenton |
3 | Measurement Process II | Abran, Fenton |
4 | Measurement Frameworks | Abran, Fenton, Park |
5 | Measurement in an Organization -GQM and ISO 15939 | Abran, Fenton, Park |
6 | Process Measurement | Abran, Fenton |
7 | Midterm | |
8 | Product Measurement | Abran, Fenton |
9 | Service Measurement | Abran, Fenton |
10 | Quality and Measurement | Abran, Fenton |
11 | Measurement for Software Management I | Abran, Fenton, Han |
12 | Measurement for Software Management II | Abran, Fenton, Han |
13 | Measurement Management | Abran, Fenton, Park |
14 | Measurement Repositories | Abran, Fenton, Park |
15 | Measurement Tools | Fenton, Park |
16 | In-Class Assignments |
Sources
Course Book | 1. A. Abran, Software metrics and software metrology. New Jersey: IEEE Com-puter Society / Wiley Partnership, 2010. |
---|---|
2. Fenton, Norman E., and Shari Lawrence Pfleeger. Software metrics: a rigor-ous and practical approach. PWS Publishing Co., 1998. | |
Other Sources | 3. Kan, Stephen H. Metrics and models in software quality engineering. Addi-son-Wesley Longman Publishing Co., Inc., 2002. |
4. Linda M. Laird,M.. Carol Brennan, Software Measurement and Estimation: A Practical Approach, 2006, IEEE | |
5. Park, Robert E., Wolfhart B. Goethert, and William A. Florac. Goal-Driven Software Measurement. A Guidebook. No. CMU/SEI-96-HB-002. CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1996. | |
6. Ebert, Christof, ed. Best Practices in Software Measurement: How to Use Metrics to Improve Project and Process Performance; 37 Tables. Springer, 2005. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 3 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | To be able to use mathematics, science and engineering knowledge in solving engineering problems related to information systems. | X | ||||
2 | Design and conduct experiments in the field of informatics, analyze and interpret the results of experiments. | X | ||||
3 | Designs an information system, component and process according to the specified requirements. | X | ||||
4 | Can work effectively in disciplinary and multidisciplinary teams. | X | ||||
5 | Identify, formulate and solve engineering problems in the field of informatics. | |||||
6 | Acts in accordance with professional ethical rules. | |||||
7 | Communicates effectively both orally and in writing. | |||||
8 | Gains awareness of the necessity of lifelong learning. | |||||
9 | Learn about contemporary issues. | X | ||||
10 | To be able to use modern engineering tools, techniques and skills required for engineering practice. | X | ||||
11 | Knows project management methods and recognizes international standards. | X | ||||
12 | Develop informatics-related engineering products and prototypes for real-life problems. | X | ||||
13 | Contributes to professional knowledge. | |||||
14 | Can do methodological scientific research. | |||||
15 | Produce, report and present a scientific work based on an original or existing body of knowledge. | |||||
16 | Can defend the original idea generated. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 6 | 96 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 3 | 10 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 15 | 15 |
Prepration of Final Exams/Final Jury | 1 | 30 | 30 |
Total Workload | 219 |