ECTS - Biometric Identification and Verification Systems

Biometric Identification and Verification Systems (CMPE571) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Biometric Identification and Verification Systems CMPE571 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses Taken From Other Departments
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce to students the several biometric identification and verification systems.
Course Learning Outcomes The students who succeeded in this course;
  • Discuss the general concepts about the biometry and biometric systems
  • Review the fingerprint-based identification systems and algorithms used for fingerprint recognition.
  • Describe face recognition systems and their applications
  • Discuss the iris-based and hand-geometry based identification systems.
  • Introduce the multimodal biometric systems and biometric databases
  • Discuss the international standards about the biometric systems
Course Content Biometric identification and verification, performance calculations of biometric systems, fingerprint verification, face recognition, iris and retina based identification, hand geometry and DNA based identification, multimodal biometric systems, biometric system standards.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Biometrics Text Book, ch.1
2 Definitions of Identification and verfication, Error rate calculations Text Book, ch.1
3 Design of classifiers for biometric systems Text Book, ch.1
4 Fingerprint verification Text Book, ch.2
5 Face recognition Text Book, ch.3
6 Iris patterns Text Book, ch.4
7 Midterm --
8 Hand Geometry identification Text Book, ch.5, lecture notes
9 DNA based identifications Text Book, ch.5, lecture notes
10 Combined identifications systems Text Book, ch.6, lecture notes
11 Multimodal Biometrics Text Book, ch.6, lecture notes
12 Biometrics Standards Lecture notes
13 Biometric Databases. Lecture notes
14 Project presentations --
15 Review
16 Review

Sources

Course Book 1. “Introduction to Biometrics”, Anil K. Jain, Arun A. Ross, Karthhik Nandakumar, Springer, ISBN: 978-0-387-77325-4 , 2011.
Other Sources 2. “Biometric Systems: Technology, Design and Performance Evaluation, by James L. Wayman, Anil K. Jain, Davide Maltoni, and Dario Maio, 2004
3. Biometric Technologies and Verification Systems, by John R. Vacca, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 35
Final Exam/Final Jury 1 35
Toplam 5 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 To be able to use mathematics, science and engineering knowledge in solving engineering problems related to information systems. X
2 Design and conduct experiments in the field of informatics, analyze and interpret the results of experiments. X
3 Designs an information system, component and process according to the specified requirements. X
4 Can work effectively in disciplinary and multidisciplinary teams.
5 Identify, formulate and solve engineering problems in the field of informatics. X
6 Acts in accordance with professional ethical rules.
7 Communicates effectively both orally and in writing.
8 Gains awareness of the necessity of lifelong learning.
9 Learn about contemporary issues. X
10 To be able to use modern engineering tools, techniques and skills required for engineering practice. X
11 Knows project management methods and recognizes international standards. X
12 Develop informatics-related engineering products and prototypes for real-life problems. X
13 Contributes to professional knowledge.
14 Can do methodological scientific research.
15 Produce, report and present a scientific work based on an original or existing body of knowledge.
16 Can defend the original idea generated.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 5 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 125