ECTS - Process Analysis and Improvement

Process Analysis and Improvement (ISE515) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Process Analysis and Improvement ISE515 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objectives of this course are to explain the approaches for analyzing and documenting business processes and to explore various techniques, models and tools in order to support the work.
Course Learning Outcomes The students who succeeded in this course;
  • Use different techniques for business process analysis
  • Build system requirements that meet business needs
  • Understand the critical role of business process analysis for system requirements
  • Define business functions and elementary business processes
Course Content Business process concepts, process change drivers, business process mapping, business process strategy, business rule analysis, measuring the process, business process analysis, process improvement approaches, six Sigma, process reengineering, overview of enabling technologies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Process Analysis and Improvement Chapter 1, Havey Chapter 1
2 Despcription of a Good BPM Arhitecture Havey Chapter 2
3 Process Theory Chapter 3
4 Process Design Patterns Havey Chapter 4
5 Process Analysis and Improvement Using Visio Chapter 2,3
6 Data Management and Analysis Using Excel Chapter 4, 5
7 Workflow Management Havey Chapter 7
8 Process Simulation Chapter 6, 7
9 Process Simulation Chapter 6, 7
10 Visual Basic for Applications: Computer Based Tools Integration Chapter 8
11 Process Analysis and Improvement Application: Customer Service Center Chapter 9
12 Process Analysis and Improvement Application: Supply Chain Management Chapter 10
13 Student Process Analysis and Improvement Projects Chapter 11
14 Future of Computer Based Tools for Process Analysis and Improvement Chapter 12
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Seppanen, M. S., Kumar, S., Chandra, C., Process Analysis and Improvement: Tools and Techniques, McGraw-Hill, 2005. ISBN: 0072857129
Other Sources 2. Havey, M., Essential Business Process Modeling, O'Reilly Media, 2005
3. Harmon, P., Business Process Change, Second Edition: A Guide for Business Managers and BPM and Six Sigma Professionals, Morgan Kaufmann (The MK/OMG Press), 2007.
4. Harrington, H. J., Esseling, E. K. C., Van Nimwegen, H., Business Process Improvement Workbook: Documentation, Analysis, Design, and Management of Business Process Improvement, McGraw-Hill, 1997.
5. Persse, J. R., Process Improvement Essentials: CMMI, Six SIGMA, and ISO 9001, O'Reilly Media, 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering. X
2 An ability to design and conduct experiments, as well as to analyze and interpret data. X
3 An ability to design a system, component, or process to meet desired needs. X
4 An ability to function on multi-disciplinary domains. X
5 An ability to identify, formulate, and solve engineering problems. X
6 An understanding of professional and ethical responsibility. X
7 An ability to communicate effectively. X
8 Recognition of the need for, and an ability to engage in life-long learning. X
9 A knowledge of contemporary issues. X
10 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice. X
11 Skills in project management and recognition of international standards and methodologies X
12 An ability to produce engineering products or prototypes that solve real-life problems. X
13 Skills that contribute to professional knowledge. X
14 An ability to make methodological scientific research. X
15 An ability to produce, report and present an original or known scientific body of knowledge. X
16 An ability to defend an originally produced idea. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 15 45
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 175