Statics (ME201) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Statics ME201 3 0 0 3 6
Pre-requisite Course(s)
PHYS 101
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Özgür ASLAN
Course Assistants
Course Objectives To develop a clear understanding of the principles of rigid body mechanics, assumptions and idealizations, equilibrium and internal force concepts, related applications.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to characterize forces and moments acting upon a rigid body or a system of rigid bodies.
  • Students will be able to construct clear and concise free-body diagrams for any rigid body or system of rigid bodies.
  • Students will be able to develop equations of equilibrium from free-body diagram.
  • Students will be able to solve equations of equilibrium.
  • Students will be able to apply fundamental design concepts.
Course Content Genel tanıtım, parçacıkların statiği, rijit cisimlerin statiği, eşdeğer kuvvet sistemleri, denge, makasların analizi, kirişlerin analizi, sürtünme ve yüzeylerin geometrik özellikleri.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 General Principles Chapter 1
2 Force Vectors Chapter 2
3 Force Vectors Chapter 2
4 Equilibrium of a Particle Chapter 3
5 Force System Chapter 4
6 Force System Chapter 4
7 Equilibrium of a Rigid Body Chapter 5
8 Structural Analysis Chapter 6
9 Structural Analysis Chapter 6
10 Internal Forces Chapter 7
11 Friction Chapter 8
12 Center of Gravity and Centroid Chapter 9
13 Center of Gravity and Centroid Chapter 9
14 Moments of Inertia Chapter 10
15 Final Examination Period Review of Topics
16 Final Examination Period Review of Topics


Course Book 1. Engineering Mechanics: Statics, 12th Edition, Russell C. Hibbeler, Prentice Hall, 2010
Other Sources 2. Vector Mechanics for Engineers–Statics, 7th SI Ed., Beer F. P., Johnston E. R. and Eisenberg E. R., McGraw-Hill, 2004
3. Engineering Mechanics Statics, 6th Ed., Meriam, J. L., Kraige, L. G., John Wiley & Sons, 2008

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 8 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 60
Toplam 11 100
Percentage of Semester Work 40
Percentage of Final Work 60
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering. X
2 An ability to design and conduct experiments, as well as to analyse and interpret data.
3 An ability to design a system, component, or process to meet desired needs. X
4 An ability to function on multi-disciplinary teams.
5 An ability to identify, formulate, and solve engineering problems. X
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context.
9 Mühendislik çözümlerinin küresel ve toplumsal boyutlarda etkisini anlamak için gereken kapsamlı eğitim.
10 A knowledge of contemporary issues. X
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12 Skills in project management and recognition of international standards and methodologies.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 4 56
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Homework Assignments 8 3 24
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 13 26
Prepration of Final Exams/Final Jury
Total Workload 148