Statics (ME201) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Statics ME201 3. Semester 3 0 0 3 6
Pre-requisite Course(s)
PHYS101
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Halis KANDAŞ
Course Assistants
Course Objectives To develop a clear understanding of the principles of rigid body mechanics, assumptions and idealizations, equilibrium and internal force concepts, related applications.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to characterize forces and moments acting upon a rigid body or a system of rigid bodies.
  • Students will be able to construct clear and concise free-body diagrams for any rigid body or system of rigid bodies.
  • Students will be able to develop equations of equilibrium from free-body diagram.
  • Students will be able to solve equations of equilibrium.
  • Students will be able to apply fundamental design concepts.
Course Content Genel tanıtım, parçacıkların statiği, rijit cisimlerin statiği, eşdeğer kuvvet sistemleri, denge, makasların analizi, kirişlerin analizi, sürtünme ve yüzeylerin geometrik özellikleri.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 General Principles Lecture notes on moodle page
2 Force Vectors Lecture notes on moodle page
3 Force Vectors Lecture notes on moodle page
4 Equilibrium of a Particle Lecture notes on moodle page
5 Force System Lecture notes on moodle page
6 Equilibrium of a Rigid Body Lecture notes on moodle page
7 Midterm I Lecture notes on moodle page
8 Structural Analysis Lecture notes on moodle page
9 Structural Analysis Lecture notes on moodle page
10 Internal Forces Lecture notes on moodle page
11 Friction Lecture notes on moodle page
12 Midterm II Lecture notes on moodle page
13 Center of Gravity and Centroid Lecture notes on moodle page
14 Moments of Inertia Lecture notes on moodle page
15 Final Examination Period Lecture notes on moodle page
16 Final Examination Period Lecture notes on moodle page

Sources

Course Book 1. Lecture Notes on Moodle Page
Other Sources 2. Engineering Mechanics: Statics, 12th Edition, Russell C. Hibbeler, Prentice Hall, 2010
3. Vector Mechanics for Engineers–Statics, 7th SI Ed., Beer F. P., Johnston E. R. and Eisenberg E. R., McGraw-Hill, 2004
4. Engineering Mechanics Statics, 6th Ed., Meriam, J. L., Kraige, L. G., John Wiley & Sons, 2008

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 14 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 35
Toplam 17 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem.
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions.
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations.
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 4 56
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 14 28
Prepration of Final Exams/Final Jury 1 14 14
Total Workload 146