Combustion (ENE305) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Combustion ENE305 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Cihan Turhan
Course Assistants
Course Objectives The objective of the course is to give a broad engineering treatment of combustion technology with focus on fundamentals and gaseous, liquid, and solid fuel combustion systems.
Course Learning Outcomes The students who succeeded in this course;
  • Learn basic physical, chemical, and thermodynamic concepts that are important in combustion
  • Understand the fundamentals of chemical processes and the importance of chemical kinetics in combustion
  • Understand the general characteristics of laminar premixed and jet diffusion flames
Course Content Gaseous, liquid, and solid fuels, thermodynamics and kinetics of combustion, adiabatic flame temperature, combustion of gaseous and vaporized fuels, combustion of liquid fuels, combustion of solid fuels.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Scope and History of Combustion
2 Fuels
3 Fuels
4 Gas Mixtures
5 Thermodynamics of Combustion
6 Chemical Reactions
7 Chemical Reactions
8 Midterm Exam
9 Chemical Kinetics of Combustion
10 Chemical Kinetics of Combustion
11 Chemical and Phase Equilibrium
12 Combustion of Gaseous and Vaporized Fluids
13 Combustion of Gaseous and Vaporized Fluids
14 Premixed-Charge Engine Combustion
15 Premixed and Diffusion Flames
16 Final Exam

Sources

Course Book 1. An Introduction to Combustion, S. R. Turns, 2nd Ed., Mc Graw Hill, 2000
2. Combustion Engineering, G.C. Borman, K. W. Ragland, Mc Graw Hill, 1998
Other Sources 3. Combustion, Irvin Glassman, 2nd Edition, Academic Press, 1987
4. Elements of Chemical Reaction Engineering H. Scott Fogler, Prentice Hall, 2001
5. Journals: e.g. “Combustion and Flame”, “Combustion Science and Technology” , “Energy and Fuels”, “Fuel”

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 35
Toplam 9 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 5 2 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 7 14
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 126