ECTS - Solar Energy Technology
Solar Energy Technology (ENE308) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Solar Energy Technology | ENE308 | Area Elective | 3 | 1 | 0 | 3 | 5 |
| Pre-requisite Course(s) |
|---|
| (ENE203 veya EE212) |
| Course Language | English |
|---|---|
| Course Type | Technical Elective Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice. |
| Course Lecturer(s) |
|
| Course Objectives | To give necessary knowledge to the students on solar energy and its applications. The aim of the course is to help the development of the national industry. To help the development of the engineering skills of the students. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Introduction to solar energy conversions, fundamentals of solar radiation, methods of solar collection and thermal conversion, solar heating systems, solar thermal power, capturing solar energy through biomass. |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Fundamental Concepts and Solar Radiation | Chapter 1 |
| 2 | Solar Energy and Available Solar Radiation | Chapter 2 |
| 3 | Selected Heat Transfer Topics | Chapter 3 |
| 4 | Solar Angles and Extraterrestial Solar Radiation | Chapter 4 |
| 5 | Calculation of solar radiation on horizontal and tilted surfaces. | Chapter 4 |
| 6 | Atmospheric Solar Radiation | Chapter 5 |
| 7 | Transmission of solar radiation through glass and plastics. | Chapter 6 |
| 8 | Flat-Plate Collectors | Chapter 6 |
| 9 | Concentrating Collectors | Chapter 7 |
| 10 | Midterm Exam | |
| 11 | Thermal Energy storage and Power generation using thermal energy | Chapter 8 |
| 12 | Solar Energy Applications | Chapter 9 |
| 13 | Solar Energy Applications | Chapter 9 |
| 14 | Solar Cells and direct conversion of solar energy into electrical energy | Chapter 10 |
| 15 | Solar Cells and direct conversion of solar energy into electrical energy, Design of PV systems | Chapter 11 |
| 16 | Final Exam |
Sources
| Course Book | 1. J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., 2006 |
|---|---|
| Other Sources | 2. R.C. Neville, Solar Energy Conversion-The Solar Cell, 2nd Edition, Elsevier, 1995 |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | - | - |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | - | - |
| Presentation | - | - |
| Project | - | - |
| Report | 1 | 25 |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 1 | 30 |
| Final Exam/Final Jury | 1 | 45 |
| Toplam | 3 | 100 |
| Percentage of Semester Work | 0 |
|---|---|
| Percentage of Final Work | 100 |
| Total | 100 |
Course Category
| Core Courses | |
|---|---|
| Major Area Courses | X |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. | X | ||||
| 2 | The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. | X | ||||
| 3 | The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. | X | ||||
| 4 | The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. | X | ||||
| 5 | The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. | X | ||||
| 6 | Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions. | |||||
| 7 | Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity. | |||||
| 8 | The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader. | |||||
| 9 | "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). | |||||
| 10 | Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. | X | ||||
| 11 | The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes. | X | ||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
| Laboratory | |||
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 16 | 2 | 32 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | 1 | 15 | 15 |
| Homework Assignments | |||
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
| Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
| Total Workload | 130 | ||
