Solar Energy Technology (ENE308) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Solar Energy Technology ENE308 3 1 0 3 5
Pre-requisite Course(s)
ENE 203
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Dr. Murat Durak
Course Assistants
Course Objectives To give necessary knowledge to the students on solar energy and its applications. The aim of the course is to help the development of the national industry. To help the development of the engineering skills of the students.
Course Learning Outcomes The students who succeeded in this course;
  • To give the theory and practice about Solar Energy to students.
  • Learning the usage of the methods for research, design and development in the analysis of the energy transformation at applications of solar energy.
Course Content Introduction to solar energy conversions, fundamentals of solar radiation, methods of solar collection and thermal conversion, solar heating systems, solar thermal power, capturing solar energy through biomass.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Fundamental Concepts and Solar Radiation Chapter 1
2 Solar Energy and Available Solar Radiation Chapter 2
3 Selected Heat Transfer Topics Chapter 3
4 Solar Angles and Extraterrestial Solar Radiation Chapter 4
5 Calculation of solar radiation on horizontal and tilted surfaces. Chapter 4
6 Atmospheric Solar Radiation Chapter 5
7 Transmission of solar radiation through glass and plastics. Chapter 6
8 Flat-Plate Collectors Chapter 6
9 Concentrating Collectors Chapter 7
10 Midterm Exam
11 Thermal Energy storage and Power generation using thermal energy Chapter 8
12 Solar Energy Applications Chapter 9
13 Solar Energy Applications Chapter 9
14 Solar Cells and direct conversion of solar energy into electrical energy Chapter 10
15 Solar Cells and direct conversion of solar energy into electrical energy, Design of PV systems Chapter 11
16 Final Exam


Course Book 1. J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., 2006
Other Sources 2. R.C. Neville, Solar Energy Conversion-The Solar Cell, 2nd Edition, Elsevier, 1995

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 6 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 20
Final Exam/Final Jury 1 50
Toplam 10 100
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems.
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose.
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose.
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 6 2 12
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 15 15
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 132