ECTS - Electrochemistry
Electrochemistry (ENE411) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Electrochemistry | ENE411 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | The course initially gives an overview of electrode processes showing the way in which the fundamental components of the subject come together in an electrochemical experiment. Also, there are individual discussions of thermodynamics and potential, electron-transfer kinetics, and mass transfer. Concepts from these basic areas are integrated together in treatments of the various methods. There is an introduction of batteries and electrochemical cells. Then, the course follows an extensive introduction to experiments in which electrochemistry is coupled with other tools. Finally, the course explains the electrochemistry of the conducting polymers, corrosion and fuel cells. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | General electrochemical concepts; introduction to electrochemistry; thermodynamics; electrode potentials; galvanic and electrolytic cells; the cell potential of an electrochemical cell; electrode kinetics; reversible reactions; irreversible reactions; dynamic electrochemistry; mass transport; migration; convection; diffusion layers; conductivity an |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction and Overview of Electrode Processes | Chapter 1 |
2 | Potentials and Thermodynamics of Cells | Chapter 2 |
3 | Kinetics of Electrode Reactions | Chapter 3 |
4 | Basic Potential Step Methods | Chapter 4 |
5 | Basic Potential Step Methods | Chapter 5 |
6 | Potential Sweep Methods | Chapter 6 |
7 | Polarography and Pulse Voltammetry | Chapter 7 |
8 | Midterm Exam | |
9 | Techniques Based on Concepts of Impedance | Chapter 10 |
10 | Bulk Electrolysis Methods | Chapter 10 |
11 | Spectroelectrochemistry and Other Coupled Characterization Methods | Chapter 16 |
12 | Photoelectrochemistry and Electrogenerated Chemiluminescence | Chapter 18 |
13 | Photoelectrochemistry and Electrogenerated Chemiluminescence | Chapter 17 |
14 | Fuel Cell Electrochemistry | Chapter 8 |
15 | Fuel Cell Electrochemistry | Chapter 8 |
16 | Final Exam |
Sources
Course Book | 1. Allen J. Bard, Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, John Wiley & Sons, Inc.,2001. |
---|---|
Other Sources | 2. Christopher M. A. Brett, Ana Maria Oliveira Brett, Electrochemistry Principles, Methods, and Applications, 2nd Edition, Oxford University Press Inc., 1993 |
3. Waldfried Plieth, Electrochemistry for Materials Science, 1st Edition, Elsevier Inc., 2008. | |
4. Cynthia G. Zoski, Handbook of Electrochemistry, 1st Edition, Elsevier Inc., 2007. | |
5. Frano Barbir, PEM Fuel Cells: Theory and Practice, 1st Edition, Elsevier Inc., 2005. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 60 |
Final Exam/Final Jury | 10 | 40 |
Toplam | 12 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | X | ||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | |||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | X | ||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | |||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | X | ||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 15 | 30 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 125 |