Fuel Cell Technologies (ENE412) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fuel Cell Technologies ENE412 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
(ENE203 veya CEAC203)
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Yılser DEVRİM
  • Research Assistant Hasan Altınışık
Course Assistants
Course Objectives The course aims to provide deeper knowledge, a wider scope and improved understanding of theory, analysis, performance, design and the operational principles of various fuel cell components, systems, fuel processing and hydrogen infrastructure. To understand the current state of technology of stationary, automotive and portable fuel cell systems and components, and the challenges the industry faces today.
Course Learning Outcomes The students who succeeded in this course;
  • The students who succeeded in this course; • Learning fuel cell systems and components • Obtain information about hydrogen and fuel cell technologies • Learning Engineering calculation methods of fuel cell systems
Course Content Introduction: fuel cell operating principles,history,types,components and systems;fuel cell thermodynamics and electrochemistry:Nernst equation,Tafel equation,cell voltage,fuel cell efficiency and losses for operational fuel cell voltages;proton exchange membrane fuel cells:components and system, construction and performance, critical issues and recent developments;fuel cell stack design and calculations; hydrogen production, storage, safety and infrastructure; balance of fuel cell power plant

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Fuel Cell Technologies
2 Fuel Cell Basic Chemistry and Thermodynamics
3 Fuel Cell Basic Chemistry and Thermodynamics
4 Fuel Cell Electrochemistry
5 Fuel Cell Practice Studies
6 Main PEM Fuel Cell Components and Materials Properties
7 Midterm Exam
8 PEM Fuel Cell Stack design
9 PEM Fuel Cell Stack design
10 Fuel Cell System Design
11 Overview of Fuel Cell Types Chapter 8
12 Fuel Cell and Hydrogen Economy
13 Term Project
14 Term Project
15 Term Project
16 Final Exam

Sources

Course Book 1. PEM Fuel Cells: Theory and Practice, Frano Barbir, Elsevier Academic Press

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 9 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). X
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. X
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 130