Hydrogen Technology (ENE421) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Hydrogen Technology ENE421 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
(ENE203 veya CEAC203)
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Project Design/Management.
Course Coordinator
Course Lecturer(s)
  • Prof. Dr. Yılser DEVRİM
Course Assistants
Course Objectives This course provides broad coverage of the most important fields of modern hydrogen technology: hydrogen properties, production, storage, conversion to power, and applications in materials science
Course Learning Outcomes The students who succeeded in this course;
  • Understanding of fundamentals of hydrogen technology
  • Learning hydrogen properties, production, storage and conversion to power
  • Practical approaches to design and engineering related with hydrogen
  • Functioning prototypes and advance systems related with hydrogen
Course Content Properties of hydrogen, production of hydrogen from fossil fuels and biomass, hydrogen as fuel, electrolysis, hydrogen storage, applications.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 Hydrogen as a Fuel
3 Properties of Hydrogen
4 Hydrogen Production
5 Electrolysis
6 Hydrogen Storage
7 Hydrogen Storage
8 Hydrogen Functionalized Materials
9 Midterm Exam
10 Fuel Cells using Hydrogen
11 Borohydride Fuel Cells
12 Internal Combustion Engine
13 Space Applications with Hydrogen
14 Students’ Presentations
15 Students’ Presentations
16 Final Exam

Sources

Course Book 1. Hydrogen as a Future Energy Carrier by Andreas Züttel (Editor), Andreas Borgschulte (Editor), Louis Schlapbach (Editor), 2008, Wiley
Other Sources 2. Introduction to Hydrogen Technology by Roman J. Press, K. S. V. Santhanam, Massoud J. Miri, Alla V. Bailey, Gerald A. Takacs, 2008, Wiley
3. Hydrogen and Fuel Cells: Emerging Technologies and Applications, Brent Sorensen, Elsevier Science and Technology Books, 2005

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 25
Presentation - -
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 50
Final Exam/Final Jury 1 40
Toplam 5 140
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. X
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. X
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125