Residual Stresses (MFGE433) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Residual Stresses MFGE433 3 0 1 3 5
Pre-requisite Course(s)
MATE207 - ME210
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Caner Şimşir
Course Assistants
Course Objectives This course aims to acquaint the students with the concept of residual stresses, measurement techniques, their origin depending on the manufacturing method, their effects on succeeding manufacturing steps, service performance and failure.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of residual stresses as well as their origin depending on the production method.
  • Students will get acquainted with the residual stress measurement techniques.
  • Students will have hands-on-touch experience during laboratory sessions where residual stress measurements are conducted.
Course Content Residual stresses, measurement techniques, sources of residual stresses, development of residual stresses based on the manufacturing method, effect of residual stresses on subsequent manufacturing processes, effect of residual stresses on service performance and failure.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Preface
2 Terms and Definitions pp. 3-11
3 Material Factors affecting Residual Stresses pp. 99-118
4 Origins of Residual Stresses I pp. 361-372
5 Origins of Residual Stresses II pp. 141-150
6 Prediction of Residual Stresses I pp. 141-150
7 Prediction of Residual Stresses II pp. 296-331
8 Overview of Measurement Techniques I pp. 220-248
9 Overview of Measurement Techniques II pp. 189-209
10 Strain-Gauge Hole-Drilling Technique pp. 391-398
11 X-Ray Diffraction Technique pp. 345-361
12 Residual Stresses in Manufacturing I
13 Residual Stresses in Manufacturing II pp. 424 - 437
14 Consequences of Residual Stresses pp. 437 - 459
15 Student Project Presentations
16 Final Exam

Sources

Course Book 1. Totten, G.E., Howes. M., Inoue, T., Handbook of Residual Stress and Deformation of Steel, ASM International , ISNBN 0871707292, Ohio, 2002
Other Sources 2. Youtsos, A., Residual Stress and Its Effects on Fatigue and Fracture, Springer Verlag, ISBN 978-1-4020-5328-3, 2006
3. Hauk, V., Structural and Residual Stress Analysis by Nondestructive Methods, ISBN: 978-0-444-82476-9, 1997

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury - -
Toplam 4 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly. X
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 2 32
Laboratory 16 1 16
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration 1 2 2
Project 1 30 30
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury
Total Workload 128