ECTS - Introduction to Distortion Engineering
Introduction to Distortion Engineering (MFGE434) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Distortion Engineering | MFGE434 | Area Elective | 3 | 0 | 1 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Drill and Practice, Team/Group. |
Course Lecturer(s) |
|
Course Objectives | This course aims to acquaint the students with "Distortion Engineering" which tries to solve distortion problem by a system-oriented approach. In contrast to classical methods, which try to eliminate distortion by production step base measures, "Distortion Engineering" considers the distortion as an attribute of whole manufacturing chain and optimizes the production by intelligent use of predictive and corrective methods. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Distortion, distortion potential, distortion potential carriers, compensation potential, production step based solutions, intelligent process chain design, predictive methods, use of in-situ measurement techniques and adaptive process control. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Distortion Engineering | Chapter 1 |
2 | Material Factors Affecting Distortion | Chapter 2 |
3 | Processing Factors Affecting Distortion | Chapter 3 |
4 | Distortion and Accumulation of Distortion Potentials during Mechanical Shaping | Chapter 4 |
5 | Distortion and Accumulation of Distortion Potentials during Machining | Chapter 5 |
6 | Distortion and Release of Distortion Potentials during Heating | Chapter 6 |
7 | Distortion and Release of Distortion Potential during Quenching | Chapter 7 |
8 | Distortion during Thermochemical Surface Treatments (Carburizing, Nitriding, Carbonitriding etc.) | Chapter 8 |
9 | Distortion during Thermal Surface Treatments (Induction, Laser, Flame Hardening) | Chapter 9 |
10 | Distortion during Welding/Joining | Chapter 10 |
11 | Predictive Methods for Process Chain Design | Chapter 11 |
12 | Adaptive Methods for the Control of Distortion | Chapter 12 |
13 | Case Study (I) | Chapter 13 |
14 | Case Study (II) | Chapter 14 |
15 | Final exam period | All chapters |
16 | Final exam period | All chapters |
Sources
Course Book | 1. Ders Notları |
---|---|
Other Sources | 2. Zoch, H.W., Luebben,Th., Proceedings of 1st Conference on Distortion Engineering, Bremen, Germany, 2005 |
3. Zoch, H.W., Luebben,Th., Proceedings of 2nd Conference on Distortion Engineering, Bremen, Germany, 2008 | |
4. Zoch, H.W., Luebben,Th., Proceedings of 3rd Conference on Distortion Engineering, Bremen, Germany, 2011 | |
5. Totten, G.E., Howes. M., Inoue, T., Handbook of Residual Stress and Deformation of Steel, ASM International , ISNBN 0871707292, Ohio, 2002 | |
6. Gür, C.H., Pan , J., Handbook of Thermal Process Simulation of Steels, CRC Press, Taylor & Francis Inc., ISBN 9780849350191, 2008 | |
7. ] Liscic, B., Totten, G.E., Canale, L., Tensi, H., Quenching Theory and Technology 2nd Edition, CRC Press, Taylor & Francis Inc., ISBN 978-0-8493-9279-5, 2010 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | 1 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 2 | 10 |
Homework Assignments | 2 | 10 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 35 |
Toplam | 9 | 100 |
Percentage of Semester Work | 65 |
---|---|
Percentage of Final Work | 35 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | X | ||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | X | ||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | X | ||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | X | ||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | |||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | X | ||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 10 | 4 | 40 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
Total Workload | 145 |