ECTS - Nanofabrication
Nanofabrication (MFGE481) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Nanofabrication | MFGE481 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | This course aims to acquaint the students with new concepts for high rate synthesis and processing of nanostructures, fabrication methods for nanomaterials and devices, and assembling them into nanosystems and then into larger scale structures of relevance in industry and in the medical field. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Fabrication of metallic nanomaterials, manufacturing of carbon based nanostructures, nanostructured systems from low-dimensional building blocks, characterization techniques and manufacturing methods, proximity effect. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Synthetic Approaches to Metallic Nanomaterials | Chapter 1 |
2 | Wet chemical preparations, electrochemical synthesis | Chapter 2 |
3 | Decomposition of Low-Valency Transition Metal Complexes, particle size separations | Chapter 3 |
4 | Structure of carbon nanomaterials, Fullerenes, carbon nanofibers, carbon nanotubes | Chapter 4 |
5 | Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD | Chapter 5 |
6 | Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD | Chapter 6 |
7 | Carbon based materials on biomedical applications, biosensors | Chapter 7 |
8 | Room temperature nano-imprint and nano-contact technologies | Chapter 8 |
9 | X-ray and electron beam lithography | Chapter 9 |
10 | X-ray and electron beam lithography | Chapter 10 |
11 | Nano machining | Chapter 11 |
12 | Bio-mimetic and bio-molecular recognition assembly, template assisted assembly, electric-field induced assembly, Langmuir-blodgett techniques, | Chapter 12 |
13 | Collagen structural hierarchy, Extracellular Matrix and Collagen Mimics in Tissue Engineering | Chapter 13 |
14 | Inorganic binding peptides via combinatorial biology | Chapter 14 |
15 | Nanomanufacturing processes using polymeric materials | Chapter 15 |
16 | Final | All chapters |
Sources
Course Book | 1. Nano the Essentials, T. Pradeep, McGraw Hill |
---|---|
Other Sources | 2. C. S. S. R. Kumar, J. Hormes, C. Leuschner, Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact, Wiley-VCH (2005) |
3. Mark J. Jackson, Micro and Nanomanufacturing, Springer, 2007 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 1 | 5 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | 5 | 5 |
Homework Assignments | 2 | 30 |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 30 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 11 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | X | ||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | X | ||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | X | ||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | X | ||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | |||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | |||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 4 | 64 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 2 | 15 | 30 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
Prepration of Final Exams/Final Jury | 1 | 2 | 2 |
Total Workload | 102 |