Nanofabrication (MFGE481) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Nanofabrication MFGE481 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih Şengönül
Course Assistants
Course Objectives This course aims to acquaint the students with new concepts for high rate synthesis and processing of nanostructures, fabrication methods for nanomaterials and devices, and assembling them into nanosystems and then into larger scale structures of relevance in industry and in the medical field.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of size and structure/property relationship in materials
  • Students will get acquainted with ultra-miniaturized top-down and bottom-up processes.
  • Students will cultivate understanding about the capabilities and limitations of nanomanufacturing, and interrelationship among technical and economic factors involved in manufacturing
  • Students will understand the importance of nanotechnology in the future endeavors of humanity
Course Content Fabrication of metallic nanomaterials, manufacturing of carbon based nanostructures, nanostructured systems from low-dimensional building blocks, characterization techniques and manufacturing methods, proximity effect.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Synthetic Approaches to Metallic Nanomaterials Chapter 1
2 Wet chemical preparations, electrochemical synthesis Chapter 2
3 Decomposition of Low-Valency Transition Metal Complexes, particle size separations Chapter 3
4 Structure of carbon nanomaterials, Fullerenes, carbon nanofibers, carbon nanotubes Chapter 4
5 Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD Chapter 5
6 Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD Chapter 6
7 Carbon based materials on biomedical applications, biosensors Chapter 7
8 Room temperature nano-imprint and nano-contact technologies Chapter 8
9 X-ray and electron beam lithography Chapter 9
10 X-ray and electron beam lithography Chapter 10
11 Nano machining Chapter 11
12 Bio-mimetic and bio-molecular recognition assembly, template assisted assembly, electric-field induced assembly, Langmuir-blodgett techniques, Chapter 12
13 Collagen structural hierarchy, Extracellular Matrix and Collagen Mimics in Tissue Engineering Chapter 13
14 Inorganic binding peptides via combinatorial biology Chapter 14
15 Nanomanufacturing processes using polymeric materials Chapter 15
16 Final All chapters

Sources

Course Book 1. Nano the Essentials, T. Pradeep, McGraw Hill
Other Sources 2. C. S. S. R. Kumar, J. Hormes, C. Leuschner, Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact, Wiley-VCH (2005)
3. Mark J. Jackson, Micro and Nanomanufacturing, Springer, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 5 5
Homework Assignments 2 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 30
Toplam 11 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). X
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 15 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 2 2
Total Workload 102