Nanofabrication (MFGE481) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Nanofabrication MFGE481 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih Şengönül
Course Assistants
Course Objectives This course aims to acquaint the students with new concepts for high rate synthesis and processing of nanostructures, fabrication methods for nanomaterials and devices, and assembling them into nanosystems and then into larger scale structures of relevance in industry and in the medical field.
Course Learning Outcomes The students who succeeded in this course;
  • Students will develop an understanding of size and structure/property relationship in materials
  • Students will get acquainted with ultra-miniaturized top-down and bottom-up processes.
  • Students will cultivate understanding about the capabilities and limitations of nanomanufacturing, and interrelationship among technical and economic factors involved in manufacturing
  • Students will understand the importance of nanotechnology in the future endeavors of humanity
Course Content Fabrication of metallic nanomaterials, manufacturing of carbon based nanostructures, nanostructured systems from low-dimensional building blocks, characterization techniques and manufacturing methods, proximity effect.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Synthetic Approaches to Metallic Nanomaterials Chapter 1
2 Wet chemical preparations, electrochemical synthesis Chapter 2
3 Decomposition of Low-Valency Transition Metal Complexes, particle size separations Chapter 3
4 Structure of carbon nanomaterials, Fullerenes, carbon nanofibers, carbon nanotubes Chapter 4
5 Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD Chapter 5
6 Fabrication of Carbon nanotubes, arc-discharge method, laser ablation, CVD Chapter 6
7 Carbon based materials on biomedical applications, biosensors Chapter 7
8 Room temperature nano-imprint and nano-contact technologies Chapter 8
9 X-ray and electron beam lithography Chapter 9
10 X-ray and electron beam lithography Chapter 10
11 Nano machining Chapter 11
12 Bio-mimetic and bio-molecular recognition assembly, template assisted assembly, electric-field induced assembly, Langmuir-blodgett techniques, Chapter 12
13 Collagen structural hierarchy, Extracellular Matrix and Collagen Mimics in Tissue Engineering Chapter 13
14 Inorganic binding peptides via combinatorial biology Chapter 14
15 Nanomanufacturing processes using polymeric materials Chapter 15
16 Final All chapters

Sources

Course Book 1. Nano the Essentials, T. Pradeep, McGraw Hill
Other Sources 2. C. S. S. R. Kumar, J. Hormes, C. Leuschner, Nanofabrication Towards Biomedical Applications: Techniques, Tools, Applications, and Impact, Wiley-VCH (2005)
3. Mark J. Jackson, Micro and Nanomanufacturing, Springer, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 5 5
Homework Assignments 2 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 30
Toplam 11 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications. X
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 4 64
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 15 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 3 6
Prepration of Final Exams/Final Jury 1 2 2
Total Workload 102