ECTS - Welding Metallurgy and Technology

Welding Metallurgy and Technology (MATE442) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Welding Metallurgy and Technology MATE442 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To introduce the students of Materials Engineering to the principles of welding technology and its applications in addition with the behavior of metallic materials during and after welding
Course Learning Outcomes The students who succeeded in this course;
  • Ability to cite terms and definitions used in welding technology
  • To obtain information about basics of the welding processes, related application areas and recent developments
  • To obtain information about behavior of metallic materials during and after welding
  • Understanding of engineering tools used to ensure the quality of welding
  • Case studies
Course Content Welding related terms and definitions, classification of the welding processes, frequently used welding processes, their application areas, advantages and disadvantage, typical welding discontinuities, destructive and nondestructive tests applied on welded joints, quality aspects, welding metallurgy of ferrous and nonferrous metals, effects of the

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Welding related terms and definitions. Classification of the welding processes
2 Oxyacetylene welding process
3 Manual metal arc welding process.
4 Metal active gas welding process.
5 Tungsten inert gas welding process
6 Submerged arc welding process.
7 Resistance welding
8 Other welding processes
9 Behavior of carbon steels during welding
10 Behavior of low alloy steels during welding
11 Behavior of stainless steels during welding
12 Behavior of aluminium and aluminium alloys during welding
13 Behavior of other non-ferrous alloys during welding
14 Quality assurance, destructive and nondestructive tests on welding
15 Overall review
16 Final exam

Sources

Course Book 1. Lancaster.J.F., “Metallurgy of Welding”, Abington Publishing, Cambridge, 1999.
2. Kou.S. “Welding Metallurgy”, John Wiley & Sons, New Jersey, 2003.
Other Sources 3. ASM Metals Handbook. Vol.6. “Welding Brazing & Soldering”, ASM International, Metals Park, Ohio, USA, 1993.
4. AWS Welding Handbook, 9.th Ed. Vol. 2; AWS, Miami, USA, 2004.
5. AWS Welding Handbook, 9.th Ed. Vol. 3; AWS, Miami, USA, 2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions.
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations.
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader. X
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 15 15
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 126