# Calculus II (MATH152) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Calculus II MATH152 4 2 0 5 7
Pre-requisite Course(s)
MATH151 Calculus I
Course Language English N/A Bachelor’s Degree (First Cycle) Face To Face Lecture, Question and Answer, Problem Solving. The course is designed as a continuation of MATH151 Calculus I and aims to give the students the computational skills in series, analytic geometry and multi-variable differential and integral calculus to handle engineering problems. The students who succeeded in this course; understand and use sequences, infinite series, power series of functions, Taylor and Maclaurin series, use analytic geometry through vectors and interpret lines, planes and surfaces in 3-dimensional space, understand and use the functions of several variables, partial derivatives, directional derivatives, gradient vectors and tangent planes find local and absolute extrema of multivariable functions, use Lagrange Multipliers and solve optimization problems, understand and use double and triple integrals in different coordinate systems Infinite series, vectors in the plane and polar coordinates, vectors and motions in space, multivariable functions and their derivatives, multiple integrals: double integrals, areas, double integrals in polar coordinates, triple integrals in rectangular, cylindrical and spherical coordinates, line integrals, Independence of path,Green's theorem.

### Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 9.1. Sequences and Convergence, 9.2. Infinite Series, pp:495-409
2 9.3. Convergence Tests for Positive Series (The Integral Test, Comparison Tests, The Ratio and Root Tests), 9.4. Absolute and Conditional Convergence, pp:510-526
3 9.5. Power Series, 9.6. Taylor and Maclaurin Series (Convergence of Taylor Series; Error Estimates), pp:526-545
4 9.7. Applications of Taylor and Maclaurin Series, 10.1. Analytic Geometry in Three Dimensions, pp:546-549 pp:562-568
5 10.2. Vectors, 10.3. The Cross Product in 3-Space, pp:568-585
6 10.4. Planes and Lines, 10.5. Quadric Surfaces, pp:585-596
7 Midterm,
8 12.1. Functions of Several Variables, 12.2. Limits and Continuity, pp:669-681
9 12.3. Partial Derivatives, 12.4. Higher Order Derivatives, 12.5. The Chain Rule, pp:681-703
10 12.6. Linear Approximations, Differentiability, and Differentials, 12.7. Gradient and Directional Derivatives, 12.8. Implicit Functions, pp:703-705 pp:706-707 pp:714-726
11 13.1. Extreme Values, 13.2. Extreme Values of Functions Defined on Restricted Domains, pp:743-754
12 13.3. Lagrange Multipliers, 14.1. Double Integrals, pp:756-760 pp:790-796
13 14.2. Iteration of Double Integrals in Cartesian Coordinates, 14.4. Double Integrals in Polar Coordinates, pp:796-802 pp:808-812
14 14.5. Triple Integrals, 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), pp:818-830
15 14.6. Change of Variables in Triple Integrals (Cylindrical and Spherical Coordinates), pp:824-830
16 Final Exam

### Sources

Course Book 1. Calculus: A complete Course, R. A. Adams, C. Essex, 7th Edition; Pearson Addison Wesley 2. Thomas’ Calculus Early Transcendentals, 11th Edition.( Revised by M. D. Weir, J.Hass and F. R. Giardano; Pearson , Addison Wesley) 3. Calculus: A new horizon, Anton Howard, 6th Edition; John Wiley & Sons 4. Calculus with Analytic Geometry, C. H. Edwards; Prentice Hall 5. Calculus with Analytic Geometry, R. A. Silverman; Prentice Hall

### Evaluation System

Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 60
Final Exam/Final Jury 1 40
Toplam 3 100
 Percentage of Semester Work 60 40 100

### Course Category

Core Courses X

### The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering.
2 An ability to design and conduct experiments, as well as to analyse and interpret data.
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary teams.
5 An ability to identify, formulate, and solve engineering problems.
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 The broad education necessary to understand the impact of engineering solutions in a global and societal context.
9 Mühendislik çözümlerinin küresel ve toplumsal boyutlarda etkisini anlamak için gereken kapsamlı eğitim.
10 A knowledge of contemporary issues.
11 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
12 Skills in project management and recognition of international standards and methodologies.

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory
Application 16 2 32
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 18 18