Thermodynamics I (ENE203) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Thermodynamics I ENE203 3. Semester 3 0 0 3 6
Pre-requisite Course(s)
MATH157
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Mehdi MEHRTASH
Course Assistants
Course Objectives To cover the basic principles of thermodynamics. To present real-world engineering examples to give students a feel for how thermodynamics is applied in engineering practice. To develop an intuitive understanding of thermodynamics by emphasizing the physics and physical arguments.
Course Learning Outcomes The students who succeeded in this course;
  • Students should have the ability to use thermodynamic terminology and concepts appropriately.
  • Students should be able to identify the properties of a pure substance using tables including internal energy, enthalpy and entropy.
  • Students should be able to apply equations of state and thermodynamic relations to calculate the properties of a pure substance.
  • Students should be able to analyze systems using work, heat and the first and second law of thermodynamics on open and closed systems.
Course Content Basic concepts and definitions, properties of a pure substance, equations of state, work and heat interactions, first law of thermodynamics, internal energy and enthalpy, second law of thermodynamics, entropy, reversible and irreversible processes, thermodynamic analysis of processes, third law of thermodynamics.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction and Basic Concepts Chapter 1
2 Energy Conversion and General Energy Analysis Chapter 2
3 Properties of Pure Substances Chapter 3
4 Properties of Pure Substances Chapter 3
5 Energy Analysis of Closed Systems Chapter 4
6 Energy Analysis of Closed Systems Chapter 4
7 Mass and Energy Analysis of Control Volumes Chapter 5
8 Mass and Energy Analysis of Control Volumes Chapter 5
9 Midterm Exam
10 The Second Law of Thermodynamics Chapter 6
11 The Second Law of Thermodynamics Chapter 6
12 Entropy Chapter 7
13 Entropy Chapter 7
14 Thermodynamic Property Relations Chapter 12
15 Thermodynamic Property Relations Chapter 12
16 Final Exam

Sources

Course Book 1. Thermodynamics: An Engineering Approach, Y.A. Çengel and M. A. Boles, 8th Ed.in SI Units, McGraw-Hill, 2015
Other Sources 2. • Fundamentals of Engineering Thermodynamics, C. Borgnakke and R.E.Sonntag, 8th Ed. SI Version, 2014.
3. • Fundamentals of Engineering Thermodynamics, Michael J. Moran, Howard N. Shapiro, 5th Edition, John Wiley & Sons Inc., 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 8 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. X
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 6 30
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 151