Dynamics (MECE204) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Dynamics MECE204 4. Semester 2 2 0 3 6
Pre-requisite Course(s)
ME 211 Statics and Strength of Materials
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce students with the mathematical description of the plane motion of particles and rigid bodies. The relation between force and motion is studied in detail.
Course Learning Outcomes The students who succeeded in this course;
  • 1. Conduct the kinematical analysis for the motion of particles
  • 2. Apply Newton’s second law of motion, work-energy and impulse-momentum to particle motion problems
  • 3. Conduct a kinematical analysis fort he plane motion of rigid bodies
  • 4. Apply Newton’s second law of motion, work-energy and impulse-momentum to rigid body systems
Course Content Particles and rigid bodies with respect to planar motions; kinematics and kinetics, methods of Newton?s second law, work energy and impulse-momentum.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction of Dynamics, Kinematics of particles: Rectilinear Motion
2 Kinematics of particles: Plane Curvilinear Motion, Space Curvilinear Motion
3 Kinematics of particles: Relative Motion, Constrained Motion
4 Kinetics of particles: Newton’s second law
5 Kinetics of particles: Newton’s second law (cont’d)
6 Kinetics of particles: Work and Energy
7 Kinetics of particles: Work and Energy (cont’d)
8 Kinetics of particles: Impulse and Momentum
9 Kinetics of particles: Impact and Kinetics of systems of particles
10 Plane Kinematics of Rigid Bodies
11 Plane Kinematics of Rigid Bodies (cont’d)
12 Plane Kinetics of Rigid Bodies: Newton’s second law
13 Plane Kinetics of Rigid Bodies: Work and Energy
14 Plane Kinetics of Rigid Bodies: Impulse and Momentum
15 Exam Week
16 Exam Week

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury - -
Final Exam/Final Jury - -
Toplam 0 0
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively.
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines.
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.
12 Ability to work in the fields of both thermal and mechanical systems including the design and production steps of these systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury
Total Workload 0