Failure Analysis (ME431) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Failure Analysis ME431 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
ME210 ve ME316
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Types of failures. Macro and microfracture mechanisms. Causes of failures:defective material, faulty design, improper material selection, faulty manufacturing and construction, etc. Analysis of failures. Case studies.
Course Learning Outcomes The students who succeeded in this course;
  • Ability to analyze a complex system, system component or process and design under realistic constraints to meet desired requirements
Course Content Hata türleri, makro ve mikro çatlak mekanizmaları, hata nedenleri: defolu malzeme, yanlış tasarım, uygun olmayan malzeme seçimi, yanlış imalat ve montaj, hata analizi, vaka incelemeleri.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Causes and Mechanisms of Failure Chapter 1
2 Tools and Techniques Used in Failure Analysis Chapter 2
3 Fracture Types, Macro Fracture Properties Chapter 3
4 Microcharacteristics on Fractured Surfaces Chapter 4
5 Microcracks and Griffith Theory Chapter 5
6 Fracture Mechanics, Stress Concentration Chapter 6
7 Lineer Elastic Fracture Mechanics Chapter7
8 Elastic Plastic Fracture Mechanics Chapter 8
9 Fracture Toughness Tests Chapter 9
10 J Testing and CTOD Testing Chapter 10
11 Parameters Affecting Fracture Toughness Chapter 11
12 Fatique Crack Initiation Chapter 12
13 Environmentally Assisted Cracking in Metals Chapter 13
14 Environmentally Assisted Cracking in Metals Chapter 14
15 Final Exam Period All Chapters
16 Final Exam Period All Chapters

Sources

Course Book 1. Fracture Mechanics: Fundamentals and Applications, T.L. Anderson, CRC Press, 2017.
Other Sources 2. Practical Engineering Failure Analysis Hani M. Tawancy, Anwar Ul-Hamid, Nureddin M. Abbas, Marcel Dekker, 2004
3. Deformation and Fracture Mechanics of Engineering Materials, R. W. Hertzberg, John Wiley & Sons, 2013
4. Mechanical Behaviour of Engineering Materials, J. Rösler, Springer,2007.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 15
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. X
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. X
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. X
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. X
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. X
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. X
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. X
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. X
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 1 10 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 130