Fracture Mechanics (ME435) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Fracture Mechanics ME435 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Özgür ASLAN
Course Assistants
Course Objectives Types of fracture in metals. Griffith theory of brittle fracture, crack propagation, ductile fracture, elastic-plastic fracture mechanics, notch effects. Energy-temperature curves. Determination of stress intensity factor, fracture design philosophy; temper brittleness, hydrogen embrittlement, Unstability of lineer elastic and elastic-plastic fracture, fatigue crack propagation, corrosion fatigue, stress corrosion cracking.
Course Learning Outcomes The students who succeeded in this course;
Course Content Metallerde kırılma türleri, Griffith gevrek kırılma teorisi, çatlak yayılımı, sünek kırılma, elastik-plastik kırılma mekaniği, çentik etkileri, enerji-sıcaklık eğrileri, gerilim yoğunluğu katsayısının belirlenmesi, kırılma tasarımının felsefesi; meneviş gevrekliği, hidrojen gevretmesi, lineer elastik-plastik kırılmanın kararsızlığı, yorulma çatlağı

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation

Sources

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 15
Presentation 1 10
Project 1 25
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 20
Final Exam/Final Jury 1 30
Toplam 10 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of mathematics, physical sciences and the subjects specific to engineering disciplines; the ability to apply theoretical and practical knowledge of these areas in the solution of complex engineering problems. X
2 The ability to define, formulate, and solve complex engineering problems; the ability to select and apply proper analysis and modeling methods for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions in such a way as to meet the specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to select, and use modern techniques and tools needed to analyze and solve complex problems encountered in engineering practices; the ability to use information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, and analyze and interpret results for investigating complex engineering problems or research areas specific to engineering disciplines. X
6 The ability to work efficiently in inter-, intra-, and multi-disciplinary teams; the ability to work individually.
7 Effective oral and written communication skills; The knowledge of, at least, one foreign language; the ability to write a report properly, understand previously written reports, prepare design and manufacturing reports, deliver influential presentations, give unequivocal instructions, and carry out the instructions properly.
8 Recognition of the need for lifelong learning; the ability to access information, follow developments in science and technology, and adapt and excel oneself continuously.
9 Acting in conformity with the ethical principles; professional and ethical responsibility and knowledge of the standards employed in engineering applications.
10 Knowledge of business practices such as project management, risk management, and change management; awareness of entrepreneurship and innovation; knowledge of sustainable development.
11 Knowledge of the global and social effects of engineering practices on health, environment, and safety issues, and knowledge of the contemporary issues in engineering areas; awareness of the possible legal consequences of engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 4 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 102