ECTS - Introduction to Computational Fluid Dynamics

Introduction to Computational Fluid Dynamics (ME437) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Computational Fluid Dynamics ME437 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
AE307
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Experiment.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To introduce Computational Fluid Dynamics (CFD) as a tool for solution of fluid dynamics problems. To familiarize students with different methods used in solving computational fluid dynamics problems such as finite differences, finite elements and finite volumes. To teach concepts such as boundary and initial conditions, numerical accuracy, consistency and stability. To enable students to conduct an independent project on a related topic.
Course Learning Outcomes The students who succeeded in this course;
  • 1. Understanding of the importance of the computational fluid dynamics (CFD) method in engineering problem solving and new product design. 2. Formation of basic CFD principles. 3. Evaluation of CFD application areas. 4. Knowing the position of commercial CFD programs. 5. Understanding of limitations in CFD applications.
Course Content Hesaplamalı akışkanlar mekaniğine giriş, akışkanlar mekaniğinin temel denklemleri, temel hesaplamalı teknikler, sayısal şemaların özellikleri, sonlu farklar yöntemi, sonlu elemanlar yöntemi, denklem sistemlerinin çözüm yöntemleri, ağ (mesh) oluşturma.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction
2 Commercial CFD Codes
3 1-Dimensional Heat Conduction, Solution File and Solution Procedure.
4 Discretization Procedure With The Finite Volume Method: 1-Dimensional Heat Conduction, Boundary Conditions And Source Term Expressions.
5 Boundary Source Linearization, General Rules For The Discretization Of Equations.
6 Numerical Exact Solution Of The 1-Dimensional Heat Conduction Problem: Formulation of Governing Equations, Formulation Of The Algebraic Equations Usin
7 Interior Cells, Boundary Cells, Numeric Solution Using Algebraic Equations.
8 Laminar Flow İn A Sudden Expansion Channel, Solution File And Solution Procedure.
9 Other Cfd Method Subjects: Variable Cell Distributions, Blocking İnside The Computational Domain.
10 Relaxation, Convergence And Restart, Control Of Accuracy And Validity Of Cfd Solutions.
11 Transient Natural Convection, Solution File And Solution Procedure.
12 Application
13 Application
14 Application

Sources

Course Book 1. Versteeg, H. K. and Malalasekera, W., “An Introduction to Computational Fluid Dynamics”, Longman, 1995
2. Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, 1980.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 15
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 40
Toplam 9 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. X
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. X
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. X
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. X
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. X
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity. X
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 5 3 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 15 30
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 155