ECTS - Probability and Statistics
Probability and Statistics (IE220) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Probability and Statistics | IE220 | 5. Semester | 3 | 0 | 0 | 3 | 5 |
| Pre-requisite Course(s) |
|---|
| N/A |
| Course Language | English |
|---|---|
| Course Type | Compulsory Departmental Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
| Course Lecturer(s) |
|
| Course Objectives | In this course, the students will be learning fundamental concepts of the probability and statistics so that they can solve practical problems of engineering which requires statistical techniques. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Introduction to probability and statistics; random variables and probability distributions; expected value; sampling distributions; one and two sample estimation problems; test of hypotheses; simple linear regression. |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | The role of probability and statistics in engineering | [1] pages 1-15 |
| 2 | Descriptive Statistics-Numerical Summary | [1] pages 191-214 |
| 3 | Descriptive Statistics-Graphical Summary | [1] pages 191-214 |
| 4 | Probability | [1] pages 17-57 |
| 5 | Probability | [1] pages 17-57 |
| 6 | Random Variables | [1] pages 67-74 [1] pages 108-114 |
| 7 | Midterm 1 | |
| 8 | Discrete Probability Distributions | [1] pages 79-97 |
| 9 | Continuous Probability Distributions | [1] pages 116-127 |
| 10 | Sampling Distributions | [1] pages 223-231 |
| 11 | Point and Interval Estimation | [1] pages 253-263 |
| 12 | Point and Interval Estimation | [1] pages 253-263 |
| 13 | Hypothesis Testing | [1] pages 283-314 |
| 14 | Midterm 2 | |
| 15 | Inference for two samples | [1] pages 351-368 |
| 16 | Simple Linear Regression | [1] pages 401-440 |
Sources
| Course Book | 1. Montgomery, D.C., and Runger, G.C., Applied Statistics and Probability for Engineers, John Wiley and Sons, Inc., 4th Edition, June 2006. |
|---|---|
| Other Sources | 2. Walpole, R.E. , Myers, R.H., Myers, S.L. an Ye, K., Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th edition, 2007. |
| 3. Milton, J.S. and Arnold, J.C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, McGraw-Hill, 4th edition, 2002. | |
| 4. Ross, S., Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 3rd edition, 2004. | |
| 5. Triola, M.F., Essentials of Statistics, Addison Wesley,2nd edition, 2004. |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | - | - |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | 4 | 20 |
| Presentation | - | - |
| Project | - | - |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 2 | 40 |
| Final Exam/Final Jury | 1 | 40 |
| Toplam | 7 | 100 |
| Percentage of Semester Work | 60 |
|---|---|
| Percentage of Final Work | 40 |
| Total | 100 |
Course Category
| Core Courses | |
|---|---|
| Major Area Courses | X |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems. | X | ||||
| 2 | The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem. | X | ||||
| 3 | The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions. | |||||
| 4 | The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations. | X | ||||
| 5 | The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results. | X | ||||
| 6 | Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions. | |||||
| 7 | Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity. | |||||
| 8 | The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader. | |||||
| 9 | "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession). | |||||
| 10 | Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation. | |||||
| 11 | The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes. | |||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
| Laboratory | |||
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 16 | 3 | 48 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | |||
| Homework Assignments | 4 | 5 | 20 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 2 | 3 | 6 |
| Prepration of Final Exams/Final Jury | 1 | 3 | 3 |
| Total Workload | 125 | ||
