ECTS - Entrepreneurship Inspired by Nature: Interdisciplinary Approaches
Entrepreneurship Inspired by Nature: Interdisciplinary Approaches (ART270) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Entrepreneurship Inspired by Nature: Interdisciplinary Approaches | ART270 | Fall and Spring | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Discussion. |
Course Lecturer(s) |
|
Course Objectives | Fundamental facts of natural and ecological systems are explored and introduced as references for innovation and entrepreneurship. Basic principles of nature are mimicked in the process of innovation. New areas of opportunities for creativity are explored via interdisciplinary applications. 21. Century skills are introduced as new areas of development. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Biomicicry; the natural processes of sustaining life on earth and using it as a model for social and economic innovations; the integration among the components of ecosystems: living organisms; climate, and the chemical environment;opportunities for innovative entrepreneurship practices with interdisciplinary approaches; the 21st century skills and nature?s principles for innovative and creative entrepreneurship opportunities. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction of the course content | |
2 | Natural Systems as the source and support for life. Ecology: The grand global interaction | |
3 | Sustainability principles | |
4 | Biomimicry: Nature as a model, nature as a mentor, and nature as a measure for design, planning, and organizations. | |
5 | Biomimicry: Interdisciplinary innovation and solutions | |
6 | The circular pattern of nature’s dynamics. | |
7 | Eco-effectiveness and Regenerative Models | |
8 | Midterm: a critical analysis report/poster presentation | |
9 | Nature for 21st century skills | |
10 | From the beginning of the Modern Era to the Fourth Industrial Revolution | |
11 | Interdisciplinary approaches in innovation and entrepreneurship. | |
12 | Entrepreneurship opportunities inspired by nature. | |
13 | Nature-inspired entrepreneurship success stories. | |
14 | Final Presentations | |
15 | Final Presentations | |
16 | Final Presentations |
Sources
Other Sources | 1. Benyus, J. M. (1997). Biomimicry: Innovation Inspired by Nature. New York: Morrow. |
---|---|
2. Borrello, M., Pascucci, S. ve Cembalo, L. (2020). Three Propositions to Unify Circular Economy Research: A Review. Sustainability. 12(10) 4069. | |
3. Cain, M. L., Bowman, W. D. ve Hacker, S. D. (2011). Ecology. Sunderland: Sinauer Assoc. | |
4. Ndubisi, N. O. ve Iftikhar, K. (2012). Relationship between Entrepreneurship, Innovation and Performance. Journal of Research in Marketing and Entrepreneurship 14 (2), 214-236. | |
5. Hofstra, N. ve Huisingh, D. (2014). Eco-Innovations Characterized: a Taxonomic Categorization for Assessing the Relationships between Humans and Nature. Journal of Cleaner Production 66, 459-468. | |
6. Hofstra, N. (2015). Entrepreneurship Inspired by Nature. The Spiritual Dimension of Business Ethics and Sustainability Management. | |
7. Myers, W. (2014). Biodesign, Nature Science Creativity. Thames & Hudson | |
8. Prieto-Sandoval, V., Jaca, C. ve Ormazabal, M. (2017). Towards a Consensus on the Circular Economy. Journal of Cleaner Production 179 (1) 605- 615. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | 15 | 10 |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | 1 | 20 |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 18 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | |||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | |||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | |||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | |||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | |||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | X | ||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | X | ||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | |||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | 3 | 8 | 24 |
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 5 | 3 | 15 |
Presentation/Seminar Prepration | 2 | 9 | 18 |
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 8 | 8 |
Prepration of Final Exams/Final Jury | 1 | 12 | 12 |
Total Workload | 125 |