Biomaterials (MATE460) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Biomaterials MATE460 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To give issues of biomaterials’ behavior, toxicology, and biocompatibility; the properties, performance, and use of biomaterials in order to teach the fundamental principles of biomaterials to all engineers, biologists, medical doctors
Course Learning Outcomes The students who succeeded in this course;
  • Students obtain a wealth of valuable data and get experience that will be of use to all bioengineers, materials scientists, and practicing physicians concerned with the properties, performance, and use of materials—from research engineers faced with selecting materials for given tasks to physicians and surgeons interested in materials’ biocompatibility, behavior, and toxicology.
Course Content Definition of biomaterial,biocompatibility,host response,synthetic and biological materials,synthetic biomaterial classes,polymers in the body,implant factors,host factors,categories of biomaterial applications,evaluation of biomaterials,historical evaluation of implants,current work in biomaterials, motivation for future directions,current trends.Properties of materials;bulk properties of materials, mechanical properties of materials;comparison of common surface analysis methods;

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Definition of biomaterial, biocompatibility, host response Related pages of the given sources
2 Synthetic and biological materials Related pages of the given sources
3 Categories of biomaterial applications Related pages of the given sources
4 Evaluation of biomaterials, historical evaluation of implants Related pages of the given sources
5 Current work in biomaterials
6 Motivation for future directions Related pages of the given sources
7 Current trends Related pages of the given sources
8 Midterm 1
9 Properties of materials; bulk properties of materials Related pages of the given sources
10 Mechanical properties of materials Related pages of the given sources
11 Comparison of common surface analysis methods Related pages of the given sources
12 Sterilisation Methods of Biomaterials Related pages of the given sources
13 Polymers as Biomaterials Related pages of the given sources
14 Evaluation of student presentations
15 Recitation before final exam
16 Final Exam

Sources

Other Sources 1. Biomaterials An Introduction, Joon Park, R.S. Lakes, 3rd Edition, Springer, 2007.
2. Biomaterials Principles and Applications, Joon Park, Joseph D. Bronzino, CRC Press, 2003.
3. Biomaterials and Bioengineering Handbook, Donald L. Wiss, 2003.
4. Biomaterials in the Design and Reliability of Medical Devices, Michael N. Helmus, Eurekah, 2002.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 10
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 8 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125