ECTS - Introduction to Bioinformatics
Introduction to Bioinformatics (SE446) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Introduction to Bioinformatics | SE446 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of the course is to provide necessary knowledge and skills related to computational techniques for mining the large amount of biological data. In this course the applications of the computational techniques in bioinformatics will be introduced. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | DNA and protein sequence alignment, phylogenetic trees, protein structure prediction, motive findin, microarray data analysis, gene/protein networks. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction | Chapters 1,2,3 (main text) |
2 | Producing and Analyzing Sequence Alignments | Chapter 4 |
3 | Pairwise Sequence Alignment and Database Searching | Chapter 5 |
4 | Pairwise Sequence Alignment and Database Searching | Chapter 5 |
5 | Patterns, Profiles, and Multiple Alignments | Chapter 6 |
6 | Patterns, Profiles, and Multiple Alignments | Chapter 6 |
7 | Recovering Evolutionary History | Chapter 7 |
8 | Building Phylogenetic Trees | Chapter 8 |
9 | Obtaining Secondary Structure from Sequence | Chapter 11 |
10 | Predicting Secondary Structures | Chapter 12 |
11 | Modeling Protein Structure | Chapter 13 |
12 | Clustering Methods and Statistics | Chapter 16 |
13 | Clustering Methods and Statistics | Chapter 16 |
14 | Clustering Methods and Statistics | Chapter 17 |
15 | Final Examination Period | Review of topics |
16 | Final Examination Period | Review of topics |
Sources
Course Book | 1. M. Zvelebil and J. O. Baum, Understanding Bioinformatics, Garland Science, 2008 |
---|---|
Other Sources | 2. N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, MIT press, 2004 |
3. A. M. Lesk, Introduction to Bioinformatics, Oxford University Press, 2002 | |
4. D. Mount, Bioinformatics: Sequence and genome analysis, Cold Spring Harbor Laboratory Press, 2001 | |
5. T. Jiang, Y. Xu, and M. Zhang, eds. Current Topics in Computational Molecular Biology, MIT press, 2002 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 1 | 20 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 20 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 4 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | |||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | |||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | |||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | |||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | |||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | |||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | |||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | 3 | 5 | 15 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 130 |