ECTS - Machine Learning for Engineers

Machine Learning for Engineers (CMPE468) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Machine Learning for Engineers CMPE468 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course objective is to provide an introduction to Machine Learning concepts, algorithms, and their applications in engineering areas without requiring advanced calculus, linear algebra, and probability theory, and the ability to work within interdisciplinary teams for developing a project for which the teams will be formed from different disciplines.
Course Learning Outcomes The students who succeeded in this course;
  • Describe fundamental concepts and algorithms of machine learning and their applications
  • Evaluate the machine learning models and parameter tuning
  • Apply machine learning algorithms to particular engineering applications
  • Work within interdisciplinary teams for developing a project
Course Content Artificial intelligence, machine learning, supervised and unsupervised learning, binary classification, multiclass classification, regression, clustering, model evaluation.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Why Machine Learning? A First Application: Classifying Iris Species Ch.1
2 Supervised Learning: Classification and Regression Ch. 2.1
3 k-Nearest Neighbors Ch. 2.2
4 Linear Models Ch. 2.3
5 Naive Bayes Classifiers Ch. 2.4
6 Decision Trees Ch. 2.5
7 Random Trees Ch. 2.6
8 Support Vector Machines Ch. 2.7
9 Unsupervised Learning Ch. 3.1
10 Clustering: K-means Ch. 3.5
11 Model Evaluation: cross-validation, leave-one-out, grid search Ch 5.1
12 Evaluation Metrics and Scoring Ch. 5.2
13 Project Presentations
14 Project Presentations

Sources

Course Book 1. Introduction to Machine Learning with Python, A Guide for Data Scientists by Andreas C. Müller and Sarah Guido, O’Reilly Media, Inc, October 2016
Other Sources 3. Machine Learning 101, Data Science. Nov 26, 2018
4. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems / Aurelien Geron.
5. Introduction to Machine Learning, Ethem Alpaydin. MIT Press, 2014.
6. Orange web site, https://orange.biolab.si/

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems.
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem.
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions.
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations.
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 115