Thermodynamics II (ENE204) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Thermodynamics II ENE204 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
(ENE203 veya CEAC203 veya CEAC207)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Mehdi MEHRTASH
Course Assistants
Course Objectives Application of the laws of thermodynamics to the power and refrigeration cycles. Mass, energy, entropy and exergy analysis in reactive and nonreactive processes.
Course Learning Outcomes The students who succeeded in this course;
  • Understand and use the concept of exergy.
  • Learn and analyze gas and vapor power cycles, regeneration, cogeneration, combined and refrigeration cycles.
  • Determine the properties of gas mixtures and gas-vapor mixtures
  • Analyze the reacting and nonreacting systems in terms of change in energy and entropy and develop the chemical equilibrium criterion in these systems
Course Content Property relations for pure substances, ideal gases, mixture of ideal gases, and atmospheric air; steam power cycles, refrigeration cycles, spark-ignition and compression-ignition engines, and turbine cycles.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Exergy: A Measure of Work Potential Chapter 8
2 Exergy: A Measure of Work Potential Chapter 8
3 Gas Power Cycles Chapter 9
4 Gas Power Cycles Chapter 9
5 Vapor and Combined Power Cycles Chapter 10
6 Vapor and Combined Power Cycles Chapter 10
7 Vapor and Combined Power Cycles Chapter 10
8 Refrigeration Cycles Chapter 11
9 Midterm Exam
10 Gas Mixtures Chapter 13
11 Gas Vapor Mixtures and Air-Conditioning Chapter 14
12 Chemical Reactions Chapter 15
13 Chemical Reactions Chapter 15
14 Chemical and Phase Equilibrium Chapter 16
15 Chemical and Phase Equilibrium Chapter 16
16 Final Exam

Sources

Course Book 1. Thermodynamics: An Engineering Approach, Y.A. Çengel and M. A. Boles, 8th Ed., McGraw-Hill, 2015.
Other Sources 2. Fundamentals of Engineering Thermodynamics, C. Borgnakke and R.E.Sonntag, 8th Ed. SI Version, 2014.
3. Fundamentals of Engineering Thermodynamics, Michael J. Moran, Howard N. Shapiro, 5th Edition, John Wiley & Sons Inc., 2006

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 15 15
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 30
Toplam 19 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 15 2 30
Presentation/Seminar Prepration
Project
Report
Homework Assignments 5 4 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 12 12
Total Workload 126