ECTS - Surface Processing of Materials

Surface Processing of Materials (MATE464) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Surface Processing of Materials MATE464 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives To introduce the scope and concepts of surface engineering to students. To teach basic tribological and corrosion aspects of surfaces and coatings. To teach various industrial gaseous, solution and molten state deposition processes of surface coatings. To transfer knowledge and establish critical awareness of the techniques used to characterize the surfaces and coatings and the principles behind their operation.
Course Learning Outcomes The students who succeeded in this course;
  • Recognition of the importance of surface engineering.
  • Understanding of the fundamental characterization of surfaces and coatings.
  • Basic understanding of the corrosion, friction, wear and lubrication of the surfaces interacting with each other and with environment.
  • Knowledge on major surface processing techniques from surface hardening with induction and carburizing to various surface coatings methods including PVD, CVD and electrodeposition.
  • Ability to specify requirements for a given application and then choose the suitable surface processing method.
Course Content Characterization of surfaces, interaction of surfaces, theory of contact mechanics, surface hardening methods, carburizing, conversion coatings, surface coating methods: gaseous, solution and molten state deposition processes, principles of physical and chemical vapor deposition, electrochemical deposition, spray coatings.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to the concepts of surface engineering. Handouts and related pages of the listed sources
2 Properties and characterization of material surfaces. Handouts and related pages of the listed sources
3 Theory of contact mechanics. Handouts and related pages of the listed sources
4 Corrosion and tribology of material surfaces. Handouts and related pages of the listed sources
5 Surface processing techniques without chemical alteration. Handouts and related pages of the listed sources
6 Surface processing techniques with chemical alteration; carburizing, nitriding. Handouts and related pages of the listed sources
7 Deposition processes of surface coatings from gaseous state; physical vapor deposition. Handouts and related pages of the listed sources
8 Deposition processes of surface coatings from gaseous state; chemical vapor deposition. Handouts and related pages of the listed sources
9 Deposition processes of surface coatings from liquid solutions; electro and electroless deposition. Handouts and related pages of the listed sources
10 Deposition processes of surface coatings from molten state; galvanizing. Handouts and related pages of the listed sources
11 Spray Deposition; themal spray, plasma spray and cold spray. Laser cladding. Handouts and related pages of the listed sources
12 Mechanical and structural characterization of coatings. Handouts and related pages of the listed sources
13 Tribology of coatings. Handouts and related pages of the listed sources
14 Coating for optical, electronic and magnetic applications. Handouts and related pages of the listed sources
15 Guidelines on the selection of appropriate surface processing technique and coating material for a given application. Handouts and related pages of the listed sources
16 Case studies for the application of coatings. Handouts and related pages of the listed sources

Sources

Other Sources 1. “The Materials Science of Thin Films”, Milton Ohring, Academic Press; 2nd ed. (2001)
2. “Coatings Tribology, Properties, Mechanisms, Techniques and Applications in Surface Engineering”, K. Holmberg and A. Matthews, 2nd ed., Elsevier, (2009)
3. “Surface Engineering for Corrosion and Wear Resistance”, edited by J.R. Davis, ASM International, (2001)
4. “Handbook of Physical Vapor Deposition (PVD) Processing”, D.M. Mattox, William Andrew (2010)
5. “Modern Electroplating”, M. Schlesinger, Wiley, (2010)
6. “Tribology, Friction and Wear of Engineering Materials”, I.M. Hutchings, Elsevier Limited (1992)
7. “Contact Mechanics”, K. L. Johnson, Cambridge University Press, Cambridge, UK, (1987)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 10
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 126