Polymer Processing (ME421) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Polymer Processing ME421 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. C. Merih ŞENGÖNÜL
Course Assistants
Course Objectives
Course Learning Outcomes The students who succeeded in this course;
  • Student will understand the macromolecular structure and different architectures of polymer molecules, their effect on crsytallinity and amorphous behavior as well as phase transitions.
  • Sudent will get familiar with many industrial polymers and engineering polymers, copolymers and their blends and learn the primary and secondary bonding between the chain molecules and their effect on their thermoplastic and thermosetting behavior as well as their mechanical properties as well as recycling
  • Student will get the basic idea of polymer synthesis and averaging of molecular weight distribution of polymers and its effect on their thermal and mechanical properties.
  • Student will have basic understanding of viscoeleasticiy and polymer rheology
  • Student will be able to understand various processing and molding operations and be able to analytically analyze extrusion process.
Course Content Introduction to hydrocarbons and macromolecular structures, homopolymers, copolymers, elastomers, blends and thermosets, morphology of polymers, semicrystalline and amorhous states, polymer additives, mechanical properties, differential scanning calorimetry and dilatometry, rheological properties, non Newtonian flow, viscoelasticity, melt flow index and rheometers, melting and mixing; die forming, extrusion based processes, molding processes, manufacture of tires and other rubber products.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to polymer morphology, architecture and behavior Chapter 1
2 Polymer synthesis and bonding in polymers Chapter 2
3 Characterization of molecular weights Chapter 3
4 Morphology of Polymers, crsytalization and amorphous structure Chapter 4
5 Thermodynamic transitions in Polymers Chapter 5
6 Mechanical Properties Chapter 6
7 Rubber elasticity Chapter 7
8 Pure viscous flow and newtonian behavior Chapter 8
9 Viscoelasticity and Non-newtonian flows Chapter 9
10 Polymer Rheology Chapter 11
11 Extrusion Chapter 11
12 Molding processes: Injection, blow molding, etc. Chapter 12
13 Other polymer shaping operations Chapter 13
14 Rubber production and vulcanization Chapter 14
15 Final exam period All Chapters
16 Final Exam Period All Chapters

Sources

Course Book 1. Fundamental Principles of Polymeric Materials (2nd edition) Stephen Rosen
Other Sources 2. Fundamental Principles of Polymeric Processing by Stanley Middleman, McGraw-Hill, 1977
3. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems by Mikell P. Groover, John Wiley and Sons Inc, (2007)
4. Principles of Polymer Processing, Zehev Tadmor, Costas G. Gogos, Wiley Interscience, 2007

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 5
Application 1 10
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 5
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 25
Toplam 8 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems.
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem.
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions.
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations.
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory 1 2 2
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 1 5 5
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 127