ECTS - Computer Integrated Manufacturing
Computer Integrated Manufacturing (ME414) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Computer Integrated Manufacturing | ME414 | Area Elective | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
MFGE205 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | |
Learning and Teaching Strategies | Lecture, Demonstration, Drill and Practice. |
Course Lecturer(s) |
|
Course Objectives | Course Objectives: To acquaint students with Computer Aided Design, Computer Aided Manufacturing and Computer Aided Process Planning. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Introduction, computer aided design (CAD) systems, computer aided graphical modeling, CAD databases, computer aided manufacturing (CAM) systems, computer aided process planning (CAPP) systems, robotic systems, group technology and cellular manufacturing systems, automated material handling systems, automated inspection systems, flexible manufacturing. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 1 Introduction to course Course PPT Presentations in MOODLE 2 Computer Aided Design (CAD) Systems “ 3 Computer Aided Design (CAD) Systems “ 4 Computer Graphics Fundamentals “ 5 Data Bases & Structures “ 6 Computer Aided Manufacturing (CAM) “ 7 Computer Aided Manufacturing (CAM) “ 8 Computer Aided Process Planning (CAPP) “ 9 Group Technology and Cellular Manufacturing “ 10 Flexible Manufacturing Systems “ 11 Industrial Robot “ 12 Rapid Prototyping “ 13 Automated Material Handling Systems “ 14 Automated Inspection “ 15 Visit to Metal Forming Center of Excellence “ 16 Final Exam |
Sources
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | 1 | 20 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 90 |
Percentage of Semester Work | |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | X | ||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | X | ||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | X | ||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | X | ||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | X | ||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | X | ||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | X | ||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | X | ||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | X | ||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | 5 | 2 | 10 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | 8 | 2 | 16 |
Report | 8 | 1 | 8 |
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 1 | 1 |
Prepration of Final Exams/Final Jury | 1 | 1 | 1 |
Total Workload | 132 |