Vehicle Aerodynamics (AE422) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Vehicle Aerodynamics AE422 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
AE307
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery
Learning and Teaching Strategies .
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. RAHIM JAFARI
Course Assistants
Course Objectives To familiarize students with basic concepts of the flow phenomenon related to vehicles, the coupling between the fundamental theories of fluid dynamics and vehicle aerodynamics, evaluation of the aerodynamic properties of a vehicle by conducting wind tunnel tests as well as simulating numerical methods.
Course Learning Outcomes The students who succeeded in this course;
  • After successful completion of this course the student will be able to: 1. identify the theories of fluid flow related to vehicle aerodynamics [12a (i), 13, 14], 2. evaluate the aerodynamic properties of a vehicle by wind tunnel [3, 5], and 3. evaluate the aerodynamic properties of a vehicle by numerical simulation [1,2].
Course Content Fundamentals of fluid mechanics; Navier-Stokes equations; analysis of aerodynamic drag, drag force calculation, and computational and experimental techniques to obtain drag coefficient.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 week 1 Fundamental fluid dynamics week 2 Fundamental fluid dynamics week 3 Resistance to vehicle motion and bluff body aerodynamics week 4 Drag coefficient of car and aerodynamics of passenger vehicles week 5 Aerodynamics performance - Fuel consumption week 6 Strategies for aerodynamic development week 7 Midterm 1 week 8 Automotive wind tunnel week 9 Wind tunnel tests week 10 Computational fluid dynamics week 11 Simulation of the flow around Ahmet body week 12 Simulation of the flow around Ahmet body week 13 Simulation of the flow around Ahmet body week 14 Simulation of the flow around Ahmet body week 15 Final project AE 307

Sources

Course Book 1. Automotive Aerodynamics, Joseph Kats, Wiley.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 15
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 40
Final Exam/Final Jury - -
Toplam 6 105
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 1 3 3
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 4 56
Presentation/Seminar Prepration 1 7 7
Project 1 15 15
Report
Homework Assignments 2 4 8
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 3 3
Prepration of Final Exams/Final Jury 1 3 3
Total Workload 137