ECTS - Design And Manufacturing Of Armored Vehicles

Design And Manufacturing Of Armored Vehicles (AE426) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Design And Manufacturing Of Armored Vehicles AE426 Area Elective 3 1 0 3 5
Pre-requisite Course(s)
(ME210 veya ME211)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course aims to give the students the understanding of armored vehicle design and manufacturing basics, and the theoretical background on which survivability concept is based.
Course Learning Outcomes The students who succeeded in this course;
  • define the armored vehicle design concepts, protection types and components
  • define various threat types
  • model survivability concepts against these threats
  • identify different materials relevant for armor design
  • characterize different material properties relevant for armor design
Course Content Armored vehicle survivability concepts; threat types; basics of armor materials; penetration mechanics; metallic, ceramic and composites used in armor design; protection against blast; high strain-rate test methods for deriving constitutive and failure behavior of materials; specialized test methods for verification of protection levels; computational techniques used to predict structural failure.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Survivability Concepts
2 Introduction to Materials
3 Threat Types
4 Penetration Mechanics
5 Stress Waves
6 Metallic Armor Materials and Structures
7 Ceramic Armor
8 Midterm I Exam
9 Composites for Armor Applications
10 Reactive Armor Systems
11 Human Vulnerability
12 Midterm II Exam
13 Blast and Ballistic Testing Techniques
14 Review
15 Final Exam

Sources

Course Book 1. Armour: Materials, Theory and Design, Paul J. Hazell, CRC Press, 2016, 1st Edition.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 12 5
Laboratory - -
Application 4 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 10
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 20
Toplam 23 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose.
3 Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods.
4 Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively.
5 Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines.
6 Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually.
7 Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions.
8 Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications.
10 Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development.
11 Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions.
12 Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application 3 1 3
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 3 2 6
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 6 12
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 125