Dynamics of Machinery (ME426) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Dynamics of Machinery ME426 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
MECE303
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Instructor Dr. Behzat B Kentel
Course Assistants
Course Objectives To develop an ability • to perform motion analysis of single degree of freedom mechanisms, • to perform dynamic force analysis in mechanisms including the effect of friction • to perform balancing in rotating machinery and inertia variant machines
Course Learning Outcomes The students who succeeded in this course;
  • construct the equation of motion of single degree of freedom mechanisms using kinematic influence coefficients and apply numerical methods to solve for equation of motion
  • perform force analysis in mechanisms including the effects of friction at prismatic and revolute joints
  • perform force analysis in simple and planetary gear trains and construct power flow diagrams
  • perform balancing of rotating machinery, design counterweights to obtain completely-balanced in-line four-bar mechanisms and reduce shaking forces and moments of in-line multi-cylinder engines
Course Content Knematic influence coefficients, equation of motion of single degree of freedom systems, analytical and numerical solution methods, effects of dry and viscous friction, force analysis and power flow in simple and planetary gear trains, rotating mass balancing, balancing of inertia-variant machines, analysis of unbalance in multi-cylinder engines

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction and review of mechanisms Review of MECE 303 topics
2 Kinematic influence coefficients
3 Kinematic influence coefficients; equation of motion for single degree of freedom mechanisms
4 Equation of motion for single degree of freedom mechanisms
5 Numerical solution of equation of motion Review of MATH 380 topics
6 General considerations on dynamics of single degree of freedom mechanisms; speed fluctuation and flywheels
7 Speed fluctuation and flywheels
8 Mode of contact at prismatic joints; effects of friction at prismatic joints
9 Effects of friction at prismatic joints
10 Effects of friction at revolute joints
11 Force analysis in simple and planetary gear trains
12 Rotating mass balancing
13 Balancing of inertia variant machines; balancing of a four bar mechanism
14 Reciprocating engines; analysis of unbalance for in-line reciprocating engines

Sources

Other Sources 1. Kinematics and Dynamics of Machinery; R.L. Norton, 1st Ed. In SI units, McGraw-Hill, 2009
2. Theory of Machines and Mechanisms; J.J. Uicker, G.R. Pennock, J.E. Shigley, 5th Ed., Oxford University Press, 2016
3. Notes on Dynamics of Machinery; E.Söylemez, T.Tümer, N. Özgüven, K. Özgören, METU Mechanical Engineering Department, 1984

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 3 10
Presentation - -
Project 1 15
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 35
Toplam 7 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems.
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem.
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions.
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations.
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 1 14
Presentation/Seminar Prepration
Project 1 20 20
Report
Homework Assignments 3 3 9
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 120