ECTS - Numerical Methods for Engineers
Numerical Methods for Engineers (MATH380) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Numerical Methods for Engineers | MATH380 | 6. Semester | 3 | 1 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
(MATH275 veya MATH231) |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Experiment, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This undergraduate course is designed for engineering students. The objective of this course is to introduce some numerical methods that can be used to solve mathematical problems arising in engineering that can not be solved analytically. The philosophy of this course is to teach engineering students how methods work so that they can construct their own computer programs. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Solution of nonlinear equations, solution of linear systems, eigenvalues and eigenvectors, interpolation and polynomial approximation, least square approximation, numerical differentiation, numerical integration. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | 1. Preliminaries: Approximation, Truncation, Round-off errors in computations. | pp. 2 - 41 |
2 | 2. Solution of Nonlinear Equations 2.1. Fixed Point 2.2. Bracketing Methods for Locating a Root | pp. 41 - 51 |
3 | 2.3. Initial Approximation and Convergence Criteria 2.4. Newton-Raphson and Secant Methods | pp. 62 - 70 |
4 | 2.6. Iteration for Non-Linear Systems (Fixed Point for Systems) 2.7. Newton Methods for Systems | pp. 167 - 180 |
5 | 3. Solution of Linear Systems 3.3. Upper-Triangular Linear Systems (Lower-Triangular) 3.4. Gaussian Eliminatian and Pivoting | pp. 120 - 137 |
6 | 3.5. Triangular Factorization (LU) | pp. 141 - 153 |
7 | Midterm | |
8 | 3.7. Doğrusal sistemler için iteratif metotlar (Jacobi / Gauss Seidel Metotları) | pp. 156 - 165 |
9 | 11. Eigenvalues and Eigenvectors 11.2. Power Method (Inverse Power Method) | pp. 588 – 592 pp. 598 - 608 |
10 | 4. Interpolation and Polynomial Approximation 4.2. Introduction to Interpolation 4.3. Lagrange Approximation and Newton Approximation | pp. 199 - 228 |
11 | 5. Curve Fitting 5.1. Least-squares Line | pp. 252 - 259 |
12 | 5.3. Spline fonksiyonları ile interpolasyon | pp. 279 - 293 |
13 | 6. Numerical Differentiation 6.1. Approximating the Derivative 6.2. Numerical Differentiation Formulas | pp. 320 - 348 |
14 | 7. Numerical Integration 7.1. Introduction to Quadrature 7.2. Composite Trapezoidal and Simpson’s Rule | pp. 352 - 374 |
15 | Review | |
16 | Genel Sınav |
Sources
Course Book | 1. J. H. Mathews, K. D. Fink, Numerical Methods Using Matlab, 4th Edition, Prentice Hall, 2004. |
---|---|
Other Sources | 2. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd Edition, Mc Graw Hill Education, 2012. |
3. A. Gilat, V. Subramaniam, Numerical Methods for Engineers and Scientists: An introduction with Applications Using MATLAB, 3rd Edition, John Wiley & Sons, Inc. 2011. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 2 | 10 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 50 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 5 | 100 |
Percentage of Semester Work | 0 |
---|---|
Percentage of Final Work | 100 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains sufficient knowledge in subjects specific to mathematics, natural sciences, and engineering disciplines; gains the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | |||||
2 | Defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | |||||
3 | Designs a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods. | |||||
4 | Selects and uses modern techniques and tools necessary for analyzing and solving complex problems encountered in engineering applications; gains the ability to use information technologies effectively. | |||||
5 | Designs experiments, conducts experiments, collects data, and analyzes and interprets the results for studying complex engineering problems or research topics specific to engineering disciplines. | |||||
6 | Works effectively in both disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Develops effective oral and written communication skills; acquires proficiency in at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear and understandable instructions. | |||||
8 | Develops awareness of the necessity of lifelong learning; gains access to information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, takes professional and ethical responsibility, and possesses knowledge of standards used in engineering applications. | |||||
10 | Gains knowledge of business practices such as project management, risk management, and change management; develops awareness of entrepreneurship and innovation; possesses knowledge of sustainable development. | |||||
11 | Gains knowledge of the impacts of engineering applications on health, environment, and safety in universal and societal dimensions, and the issues reflected in contemporary engineering fields; develops awareness of the legal consequences of engineering solutions. | |||||
12 | Gains the ability to work in both thermal and mechanical systems fields, including the design and implementation of such systems. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | |||
Laboratory | 16 | 1 | 16 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 14 | 2 | 28 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 10 | 20 |
Prepration of Final Exams/Final Jury | 1 | 13 | 13 |
Total Workload | 77 |