ECTS - Numerical Methods for Engineers

Numerical Methods for Engineers (MATH380) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Numerical Methods for Engineers MATH380 6. Semester 3 1 0 3 5
Pre-requisite Course(s)
(MATH275 veya MATH231)
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Experiment, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This undergraduate course is designed for engineering students. The objective of this course is to introduce some numerical methods that can be used to solve mathematical problems arising in engineering that can not be solved analytically. The philosophy of this course is to teach engineering students how methods work so that they can construct their own computer programs.
Course Learning Outcomes The students who succeeded in this course;
  • solve a non-linear equation in science and engineering by using the MATLAB programming.
  • solve a linear system by using a suitable method in science and engineering via the MATLAB programming.
  • find the eigenvalues and eigenvectors of a given matrix.
  • learn how to use the interpolation.
  • learn how to derive the approximations for the derivatives.
  • learn the approximate computation of an integral using numerical techniques.
Course Content Solution of nonlinear equations, solution of linear systems, eigenvalues and eigenvectors, interpolation and polynomial approximation, least square approximation, numerical differentiation, numerical integration.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 1. Preliminaries: Approximation, Truncation, Round-off errors in computations. pp. 2 - 41
2 2. Solution of Nonlinear Equations 2.1. Fixed Point 2.2. Bracketing Methods for Locating a Root pp. 41 - 51
3 2.3. Initial Approximation and Convergence Criteria 2.4. Newton-Raphson and Secant Methods pp. 62 - 70
4 2.6. Iteration for Non-Linear Systems (Fixed Point for Systems) 2.7. Newton Methods for Systems pp. 167 - 180
5 3. Solution of Linear Systems 3.3. Upper-Triangular Linear Systems (Lower-Triangular) 3.4. Gaussian Eliminatian and Pivoting pp. 120 - 137
6 3.5. Triangular Factorization (LU) pp. 141 - 153
7 Midterm
8 3.7. Doğrusal sistemler için iteratif metotlar (Jacobi / Gauss Seidel Metotları) pp. 156 - 165
9 11. Eigenvalues and Eigenvectors 11.2. Power Method (Inverse Power Method) pp. 588 – 592 pp. 598 - 608
10 4. Interpolation and Polynomial Approximation 4.2. Introduction to Interpolation 4.3. Lagrange Approximation and Newton Approximation pp. 199 - 228
11 5. Curve Fitting 5.1. Least-squares Line pp. 252 - 259
12 5.3. Spline fonksiyonları ile interpolasyon pp. 279 - 293
13 6. Numerical Differentiation 6.1. Approximating the Derivative 6.2. Numerical Differentiation Formulas pp. 320 - 348
14 7. Numerical Integration 7.1. Introduction to Quadrature 7.2. Composite Trapezoidal and Simpson’s Rule pp. 352 - 374
15 Review
16 Genel Sınav

Sources

Course Book 1. J. H. Mathews, K. D. Fink, Numerical Methods Using Matlab, 4th Edition, Prentice Hall, 2004.
Other Sources 2. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, 3rd Edition, Mc Graw Hill Education, 2012.
3. A. Gilat, V. Subramaniam, Numerical Methods for Engineers and Scientists: An introduction with Applications Using MATLAB, 3rd Edition, John Wiley & Sons, Inc. 2011.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 2 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 0
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Knowledge of mathematics, natural sciences, engineering fundamentals, computing, and topics specific to the relevant engineering discipline; the ability to use this knowledge in the solution of complex engineering problems.
2 The ability to identify, formulate, and analyze complex engineering problems using knowledge of basic sciences, mathematics, and engineering, and considering the UN Sustainable Development Goals relevant to the problem.
3 The ability to design creative solutions for complex engineering problems; the ability to design complex systems, processes, devices, or products to meet current and future requirements, considering realistic constraints and conditions.
4 The ability to select and use appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling, for the analysis and solution of complex engineering problems, with an awareness of their limitations.
5 The ability to use research methods for the investigation of complex engineering problems, including literature search, designing and conducting experiments, collecting data, and analyzing and interpreting results.
6 Knowledge of the effects of engineering practices on society, health and safety, the economy, sustainability, and the environment within the scope of the UN Sustainable Development Goals; awareness of the legal consequences of engineering solutions.
7 Acting in accordance with engineering professional principles, knowledge of ethical responsibility; awareness of acting impartially without discrimination on any grounds and being inclusive of diversity.
8 The ability to work effectively individually and in intra-disciplinary and multi-disciplinary teams (face-to-face, remote, or hybrid) as a team member or leader.
9 "The ability to communicate effectively orally and in writing on technical topics, considering the various differences of the target audience (such as education, language, profession).
10 Knowledge of practices in business life such as project management and economic feasibility analysis; awareness of entrepreneurship and innovation.
11 The ability to engage in life-long learning, including independent and continuous learning, adapting to new and emerging technologies, and thinking inquisitively regarding technological changes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory 16 1 16
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 13 13
Total Workload 77