Stage Makeup (ART298) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Stage Makeup ART298 Fall and Spring 3 0 0 3 4
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The course aims to enable students to acquire fundamental skills for theatrical makeup, which is used to visually enchance characters on the stage. By definition, theatrical makeup is more colorful and graphic compared to cosmetic makeup.
Course Learning Outcomes The students who succeeded in this course;
  • - Acquire relevant historical knowledge,
  • - Comprehend color theory,
  • - Learn how to use makeup tools by observing makeup sanitation processes,
  • - Understand implications of light and shadow for stage makeup,
  • - Apply mask making and trauma makeup techniques.
Course Content In line with the course objective and expected learning outcomes, the course will expose students to various aspects of theatrical makeup application for stage, such as historical context, products, tools and techniques.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 History of Makeup
2 History of Makeup
3 Hygiene, Sanitation, and Chemicals
4 Facial Anatomy
5 Mask history and Mask Making Practice
6 Color Theory of Makeup and Practice
7 Midterm
8 Light and Shadow
9 Project
10 Trauma Makeup
11 Trauma Makeup
12 Trauma Makeup
13 Corrective Makeup and Old Age Make up
14 Corrective Makeup and Old Age Make up
15 Seminar
16 Final Evaluation

Sources

Other Sources 1. Debreceni, T. (2013). Special Makeup Effects for Stage and Screen. Making and Applying Prosthetics. New York: Routledge.
2. Townsend, D. (2019). Foundations of Stage Makeup. New York: Routledge.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 15 10
Laboratory - -
Application 2 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation 1 10
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 30
Toplam 21 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and relevant engineering disciplines and acquires the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems.
2 Gains the ability to identify, formulate, and solve complex engineering problems and the ability to select and apply appropriate analysis and modeling methods for this purpose.
3 Gains the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements and to apply modern design methods for this purpose.
4 Gains the ability to select and use modern techniques and tools necessary for the analysis and solution of complex engineering problems encountered in engineering applications and the ability to use information technologies effectively.
5 Gains the ability to design experiments, conduct experiments, collect data, analyze results, and interpret findings for investigating complex engineering problems or discipline specific research questions.
6 Gains the ability to work effectively in intra-disciplinary and multi-disciplinary teams and the ability to work individually.
7 Gains the ability to communicate effectively in written and oral form, acquires proficiency in at least one foreign language, the ability to write effective reports and understand written reports, prepare design and production reports, make effective presentations, and give and receive clear and intelligible instructions.
8 Gains awareness of the need for lifelong learning and the ability to access information, follow developments in science and technology, and to continue to educate him/herself
9 Gains knowledge about behaviour in accordance with ethical principles, professional and ethical responsibility and standards used in engineering applications
10 Gains knowledge about business practices such as project management, risk management, and change management and develops awareness of entrepreneurship, innovation, and sustainable development.
11 Gains Knowledge about the global and social effects of engineering practices on health, environment, and safety, and contemporary issues of the century reflected into the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 2 5 10
Special Course Internship
Field Work
Study Hours Out of Class 2 3 6
Presentation/Seminar Prepration 1 8 8
Project 1 8 8
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 100