ECTSNumerical Solution of Differential Equations

Numerical Solution of Differential Equations (MDES620) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Numerical Solution of Differential Equations MDES620 Elective Courses 3 0 0 3 5
Pre-requisite Course(s)
Math 276 Differential Equations
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Discussion, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to give engineering students in graduate level the expertise necessary to understand and use computational methods for the approximate/numerical solution of differential equations problems that arise in many different fields of science.
Course Learning Outcomes The students who succeeded in this course;
  • At the end of the course the students are expected to: 1-Choose an efficient method to solve the differential equation(s) coming from a certain application field, 2- Investigate the stability and convergence properties of the methods, 3- Recognize some of the numerical difficulties that can occur when solving problems arising in scientific applications.
Course Content Numerical solution of initial value problems; Euler, multistep and Runge-Kutta methods; numerical solution of boundary value problems; shooting and finite difference methods; stability, convergence and accuracy; numerical solution of partial differential equations; finite difference methods for parabolic, hyperbolic and elliptic equations; explic

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 1. Week Review to differential equations 2. Week Numerical solutions of initial value problems; Euler, multistep and Runge-Kutta methods 3. Week Numerical solutions of initial value problems; Euler, multistep and Runge-Kutta methods 4. Week Numerical solutions of boundary value problems; finite difference methods 5. Week Numerical solutions of boundary value problems; finite difference methods 6. Week Stability, convergence and accuracy of the numerical techniques given 7. Week Stability, convergence and accuracy of the numerical techniques given 8. Week Midterm Exam 9. Week Partial differential equations and their solutions 10. Week Numerical solution of partial differential equations; finite difference methods 11. Week Numerical solution of partial differential equations; finite difference methods 12. Week Numerical solution of parabolic, hyperbolic and elliptic equations by finite difference methods 13. Week Explicit and implicit methods, Crank-Nicolson method 14. Week Explicit and implicit methods, Crank-Nicolson method. System of ordinary differential equations 15. Week Convergence, stability and consistency analysis of the methods 16. Week Final Exam


Course Book 1. 1. Numerical Solution of Partial Differential Equations by K.W. Morton and D.F. Mayers, Cambridge University Press, 1994. 2.Numerical Analysis of Differential Equations by A. Iserles, Cambridge University Press, 1996.
Other Sources 2. 1.Computer Methods for ODEs and Differential-Algebraic Equations by U.M. Ascher & L.R. Petzold, SIAM, 1998. 2.Numerical Solution of Partial Differential Equations: Finite Difference Methods by G.D. Smith, Clarendon Press, Oxford, 1985.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 7 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Accumulated knowledge on mathematics, science and mechatronics engineering; an ability to apply the theoretical and applied knowledge of mathematics, science and mechatronics engineering to model and analyze mechatronics engineering problems.
2 An ability to differentiate, identify, formulate, and solve complex engineering problems; an ability to select and implement proper analysis, modeling and implementation techniques for the identified engineering problems.
3 An ability to design a complex system, product, component or process to meet the requirements under realistic constraints and conditions; an ability to apply contemporary design methodologies; an ability to implement effective engineering creativity techniques in mechatronics engineering. (Realistic constraints and conditions may include economics, environment, sustainability, producibility, ethics, human health, social and political problems.)
4 An ability to develop, select and use modern techniques, skills and tools for application of mechatronics engineering and robot technologies; an ability to use information and communications technologies effectively.
5 An ability to design experiments, perform experiments, collect and analyze data and assess the results for investigated problems on mechatronics engineering and robot technologies.
6 An ability to work effectively on single disciplinary and multi-disciplinary teams; an ability for individual work; ability to communicate and collaborate/cooperate effectively with other disciplines and scientific/engineering domains or working areas, ability to work with other disciplines.
7 An ability to express creative and original concepts and ideas effectively in Turkish and English language, oral and written.
8 An ability to reach information on different subjects required by the wide spectrum of applications of mechatronics engineering, criticize, assess and improve the knowledge-base; consciousness on the necessity of improvement and sustainability as a result of life-long learning; monitoring the developments on science and technology; awareness on entrepreneurship, innovative and sustainable development and ability for continuous renovation.
9 Be conscious on professional and ethical responsibility, competency on improving professional consciousness and contributing to the improvement of profession itself.
10 A knowledge on the applications at business life such as project management, risk management and change management and competency on planning, managing and leadership activities on the development of capabilities of workers who are under his/her responsibility working around a project.
11 Knowledge about the global, societal and individual effects of mechatronics engineering applications on the human health, environment and security and cultural values and problems of the era; consciousness on these issues; awareness of legal results of engineering solutions.
12 Competency on defining, analyzing and surveying databases and other sources, proposing solutions based on research work and scientific results and communicate and publish numerical and conceptual solutions.
13 Consciousness on the environment and social responsibility, competencies on observation, improvement and modify and implementation of projects for the society and social relations and be an individual within the society in such a way that planing, improving or changing the norms with a criticism
14 A competency on developing strategy, policy and application plans on the mechatronics engineering and evaluating the results in the context of qualitative processes.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Homework Assignments 5 5 25
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 8 16
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 131