Advanced Fluid Mechanics (ME621) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Fluid Mechanics ME621 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is a survey of principal concepts and methods of fluid dynamics.
Course Learning Outcomes The students who succeeded in this course;
  • Understanding of the basic characteristics of fluid motion. Learning and applications of methods used to solve flow problems. Interpreting the results of solution of flow problems.
Course Content This course is a survey of principal concepts and methods of fluid dynamics. Topics include mass conservation, momentum, and energy, equations for continua; Navier-Stokes equation for viscous flows; similarity and dimensional analysis; lubrication theory; boundary layers and separation; circulation and vorticity theorems; potential flow

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basic Laws:Conservation of Mass, Momentum, and Energy
2 Newton’s Second Law, The First Law of Thermodynamics.
3 Principal concepts and methods of fluid dynamics.
4 Constitutive Relations of Viscous Flows
5 Analysis of Viscous Flows
6 Kinematics of Flow: Streamline, Pathline, Streakline and Timeline, Vortex, Circulation
7 Inviscid Flow
8 Similarity and dimensional analysis
9 Lubrication theory
10 Boundary layers and separation
11 Circulation and vorticity theorems
12 Potential flow
13 Introduction to turbulence
14 Lift and drag; surface tension and surface tension driven flows.

Sources

Course Book 1. 1. White, F. M., Viscous Fluid Flow. McGraw-Hill Book Company.
2. 2. Schlichting, H., Boundary Layer Theory. McGraw-Hill Book Company.
3. 3. Exerpts from Graebel: "Advanced fluid mechanics" Academic Press 2006.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 20
Presentation - -
Project 1 10
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to access, analyze and evaluate the knowledge needed for the solution of advanced chemical engineering and applied chemistry problems.
2 An ability to self-renewal by following scientific and technological developments within the philosophy of lifelong learning.
3 An understanding of social, environmental, and the global impacts of the practices and innovations brought by chemistry and chemical engineering.
4 An ability to perform original research and development activities and to convert the achieved results to publications, patents and technology.
5 An ability to apply advanced mathematics, science and engineering knowledge to advanced engineering problems.
6 An ability to design and conduct scientific and technological experiments in lab- and pilot-scale, and to analyze and interpret their results.
7 Skills in design of a system, part of a system or a process with desired properties and to implement industry.
8 Ability to perform independent research.
9 Ability to work in a multi-disciplinary environment and to work as a part of a team.
10 An understanding of the professional and occupational responsibilities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 2 10 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 14 28
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 110