ECTS - Logic Programming
Logic Programming (CMPE413) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Logic Programming | CMPE413 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Technical Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to teach different logic programming concepts via programming practices realized by using different logic programming languages. The students will be able to compare how different logic programming concepts are handled in different type of languages. The students get a chance to apply their knowledge by completing homework assignments written in example logic programming languages. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Lisp programming: symbolic expressions, elementary functions, Lambda notation, forms, functions, list structures, Prolog programming: facts, rules, relationships; data structures; backtracking; input/output; built-in predicates. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Logical Agents | Chapter 7 (from other source 5) |
2 | First-Order Logic | Chapter 8 (from other source 5) |
3 | Inference in First-Order Logic | Chapter 9 (from other source 5) |
4 | Inference in First-Order Logic | Chapter 9 (from other source 5) |
5 | Clauses, Predicates, Satisfying Goals, Operators and Arithmetic (In Prolog) | Chapter 2,3,4 (from other source 1) |
6 | Input Outputs /Loops /Preventing Backtracking (In Prolog) | Chapter 5,6,7 (from other source 1) |
7 | List Processing String Processing (In Prolog) | Chapter 9,10 (from other source 1) |
8 | Syntax, Semantics, Functions, Variables (in LISP) | Chapter 4,5,6 (from main text) |
9 | Syntax, Semantics, Functions, Variables (in LISP) | Chapter 4,5,6 (from main text) |
10 | Control Structures, Macros (in LISP) | Chapter 7,8 (from main text) |
11 | Numbers, Characters, Strings, Collections, File I/O (in LISP) | Chapter 10,11,14 (from main text) |
12 | Object Reorientation (Generic functions, Classes) (in LISP) | Chapter 16,17 (from main text) |
13 | Object Reorientation (Generic functions, Classes) (in LISP) | Chapter 16,17 (from main text) |
14 | Practical Applications (in LISP) | Chapter 26,27,28 (from main text) |
Sources
Course Book | 1. Seibel, P., “Practical Common LISP”, 2005, Springer. |
---|---|
Other Sources | 2. M.Bramer, “Logic Programming with Prolog”, 2005, Springer, ISBN: 1-85233-938-1. |
3. L.Sterling, E.Shapiro, “The Art of Prolog: Advanced Programming Techniques”, (MIT Press Series in Logic Programming), | |
4. http://www.atilim.edu.tr/~hurevren/COMPE462/Sebesta_Ch16.ppt | |
5. http://common-lisp.net/ | |
6. Artificial Intelligence : A Modern Approach (Second Edition)., Stuart Russell and Peter Norvig, Prentice-Hall, 2003, ISBN: 0-13-790395. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | 2 | 15 |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 25 |
Final Exam/Final Jury | 1 | 30 |
Toplam | 5 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | X |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. | X | ||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
3 | Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. | |||||
4 | Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. | X | ||||
5 | Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering. | X | ||||
6 | Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
7 | Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | X | ||||
8 | Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | |||||
9 | Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself. | |||||
10 | Acts in accordance with ethical principles and has awareness of professional and ethical responsibility. | |||||
11 | Has knowledge about the standards used in computer engineering applications. | |||||
12 | Has knowledge about workplace practices such as project management, risk management, and change management. | |||||
13 | Gains awareness about entrepreneurship and innovation. | |||||
14 | Has knowledge about sustainable development. | |||||
15 | Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering. | |||||
16 | Gains awareness of the legal consequences of engineering solutions. | |||||
17 | Analyzes, designs, and expresses numerical computation and digital representation systems. | |||||
18 | Uses programming languages and appropriate computer engineering concepts to solve computational problems. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 2 | 32 |
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | 2 | 5 | 10 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 10 | 10 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 125 |