ECTS - Operating Systems
Operating Systems (CMPE431) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Operating Systems | CMPE431 | 8. Semester | 3 | 2 | 0 | 4 | 5 |
| Pre-requisite Course(s) |
|---|
| N/A |
| Course Language | English |
|---|---|
| Course Type | Compulsory Departmental Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture. |
| Course Lecturer(s) |
|
| Course Objectives | This course is designed to teach fundamental issues of operating systems such as processes, threads, scheduling, synchronization and deadlocks, and managing resources. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Basic design principles of operating systems, single-user systems, command interpreter, semaphores, deadlock detection, recovery, prevention and avoidance; multi-user OS; resource managers, processor management and algorithms, memory management: partitioning, paging, segmentation and thrashing; device management; interrupt handlers, device drivers |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Introduction to OS | Chapters 1,2. (main text) |
| 2 | OS Structures, Processes | Chapters 2. |
| 3 | Processes | Chapter 3 |
| 4 | Threads | Chapter 4 |
| 5 | Scheduling | Chapter 5. |
| 6 | Scheduling | Chapter 5. |
| 7 | Process Synchronization | Chapter 6. |
| 8 | Process Synchronization | Chapter 6. |
| 9 | Deadlocks | Chapter 7 |
| 10 | Deadlocks | Chapter 7 |
| 11 | Memory Management | Chapter 8 |
| 12 | Virtual Memory | Chapter 9 |
| 13 | File Systems | Chapter 10-11 |
| 14 | I/O System | Chapter 13 |
Sources
| Course Book | 1. Operating System Concepts, 7th Edition, John Wiley and Sons, 2005, Silberschatz, Galvin, and Gagne, ISBN 0-471-69466-5. |
|---|---|
| Other Sources | 2. 1. Modern Operating Systems, Andrew S. Tanenbaum, 2nd edition, Prentice-Hall, 2001. |
| 3. 2. Operating Systems, Gary Nutt, Addison-Wesley, 2004. | |
| 4. 3. Operating Systems: Internals and Design Principles, 6/e, Prentice Hall, by Stallings, ISBN-10: 0136006329 | ISBN-13: 9780136006329 | |
| 5. 4. Operating Systems, 3/e, by Deitel, Deitel & Choffnes, Prentice Hall, ISBN-10: 0131828274 | ISBN-13: 97801318282785. | |
| 6. 5. Operating Systems: A Systematic View, 6/e by Davis & Rajkumar, Addison-Wesley , ISBN-10: 0321267516 | ISBN-13: 9780321267511 |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | 1 | 20 |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | 2 | 10 |
| Homework Assignments | - | - |
| Presentation | - | - |
| Project | - | - |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 1 | 30 |
| Final Exam/Final Jury | 1 | 40 |
| Toplam | 5 | 100 |
| Percentage of Semester Work | 60 |
|---|---|
| Percentage of Final Work | 40 |
| Total | 100 |
Course Category
| Core Courses | X |
|---|---|
| Major Area Courses | |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Has adequate knowledge in mathematics, science, and computer engineering-specific subjects; uses theoretical and practical knowledge in these areas to solve complex engineering problems. | X | ||||
| 2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analysis and modeling methods for this purpose. | X | ||||
| 3 | Designs a complex system, process, device, or product to meet specific requirements under realistic constraints and conditions; applies modern design methods for this purpose. | X | ||||
| 4 | Develops, selects, and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in computer engineering applications; uses information technologies effectively. | X | ||||
| 5 | Designs experiments, conducts experiments, collects data, analyzes and interprets results for the investigation of complex engineering problems or research topics specific to the discipline of computer engineering. | |||||
| 6 | Works effectively in disciplinary and multidisciplinary teams; gains the ability to work individually. | |||||
| 7 | Communicates effectively in Turkish, both orally and in writing; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | |||||
| 8 | Knows at least one foreign language; writes effective reports and understands written reports, prepares design and production reports, makes effective presentations, gives and receives clear and understandable instructions. | |||||
| 9 | Has awareness of the necessity of lifelong learning; accesses information, follows developments in science and technology, and continuously improves oneself. | |||||
| 10 | Acts in accordance with ethical principles and has awareness of professional and ethical responsibility. | |||||
| 11 | Has knowledge about the standards used in computer engineering applications. | |||||
| 12 | Has knowledge about workplace practices such as project management, risk management, and change management. | |||||
| 13 | Gains awareness about entrepreneurship and innovation. | |||||
| 14 | Has knowledge about sustainable development. | |||||
| 15 | Has knowledge about the health, environmental, and safety impacts of computer engineering applications in universal and societal dimensions and the contemporary issues reflected in the field of engineering. | |||||
| 16 | Gains awareness of the legal consequences of engineering solutions. | |||||
| 17 | Analyzes, designs, and expresses numerical computation and digital representation systems. | X | ||||
| 18 | Uses programming languages and appropriate computer engineering concepts to solve computational problems. | X | ||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 5 | 80 |
| Laboratory | 1 | 4 | 4 |
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 16 | 1 | 16 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | |||
| Homework Assignments | 2 | 3 | 6 |
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 2 | 6 | 12 |
| Prepration of Final Exams/Final Jury | 1 | 8 | 8 |
| Total Workload | 126 | ||
