Java Programming (CMPE318) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Java Programming CMPE318 2 2 0 3 5
Pre-requisite Course(s)
CMPE225
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to provide students with the knowledge and skills necessary for object-oriented programming using the Java language. In this course, Java programming language syntax and object-oriented concepts will be learned, as well as more sophisticated features of the Java runtime environment, such as support for graphical user interfaces (GUIs).
Course Learning Outcomes The students who succeeded in this course;
  • Implements Object-Oriented concepts using Java
  • Apply Java exception handling mechanisms
  • Use I/O Framework of Java
  • Use Collection Framework of Java
  • Use GUI Framework
  • Use generics
  • Use Method References and Lambda Expressions
  • Use Threads
Course Content Java technology, object-oriented programming, objects, classes, modularity; encapsulation, polymorphism, elements of Java, exceptions, garbage collector; classes and inheritance; interfaces; the collections framework; the input/output framework; the graphical user interfaces framework; threads.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to Java Ch1
2 Object Oriented Development in Java Ch.2
3 Primitives and References Ch.3.
4 Attributes and Behaviours (Lab : JavaAPI) Ch. 4, Ch 6.
5 Inheritance, Composition, and Polymorphic Variables Ch.7
6 Polymorphism, Abstract classes and interfaces Ch.8
7 Constructors, Memory management, Object Life, Statics Ch 9., Ch. 10
8 Exception Handling Ch.11
9 Intro to GUI (Ch. 12.) OR (Ch.1, Ch.2 (from source 1))
10 Event handling, and layout managers (Ch 12., Ch. 13.) OR (Ch.2, Ch.4)
11 Layout managers and components (Ch 13.) OR (Ch.5,Ch.7,Ch.8)
12 Serialization and I/O Framework Ch.14
13 Network, Threats, and Applets Ch. 15,
14 Collections and generics (Lab: Packages and Deployment) Ch.16, Ch. 17
15 Review
16 Review

Sources

Course Book 1. Kathy Sierra, Head First Java O'Reilly Media; 2nd edition, ISBN-13: 978-0596009205, 2005.
Other Sources 2. 1. James Weaver , Weiqi Gao, Stephen Chin, Dean Iverson, Johan Vos Pro JavaFX 2: A Definitive Guide to Rich Clients with Java Technology, Apress, ISBN-13: 978-1430268727, 2012
3. 2. Java How To Program 6th ed, by Deitel & Deitel, Prentice Hall, Inc. URL : http://www.deitel.com/books/downloads.html
4. 3. Object-Oriented Programming in Java, by Martin Kalin, Publisher: Prentice Hall, ISBN:0-13-019859-5
5. 4. Thinking In Java, by Bruce Eckel
6. The Java Tutorial: http://java.sun.com/docs/books/tutorial

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 30
Toplam 6 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge in mathematics, science and subjects specific to the computer engineering discipline; the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 The ability to identify, define, formulate and solve complex engineering problems; selecting and applying proper analysis and modeling techniques for this purpose. X
3 The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements; the ability to apply modern design methods for this purpose. X
4 The ability to develop, select and utilize modern techniques and tools essential for the analysis and determination of complex problems in computer engineering applications; the ability to utilize information technologies effectively. X
5 The ability to design experiments, conduct experiments, gather data, analyze and interpret results for the investigation of complex engineering problems or research topics specific to the computer engineering discipline. X
6 The ability to work effectively in inter/inner disciplinary teams; ability to work individually X
7 Effective oral and writen communication skills in Turkish; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
8 The knowledge of at least one foreign language; the ability to write effective reports and comprehend written reports, to prepare design and production reports, to make effective presentations, to give and to receive clear and understandable instructions.
9 Recognition of the need for lifelong learning; the ability to access information, to follow recent developments in science and technology.
10 The ability to behave according to ethical principles, awareness of professional and ethical responsibility;
11 Knowledge of the standards utilized in software engineering applications
12 Knowledge on business practices such as project management, risk management and change management;
13 Awareness about entrepreneurship, innovation
14 Knowledge on sustainable development
15 Knowledge on the effects of computer engineering applications on the universal and social dimensions of health, environment and safety;
16 Awareness of the legal consequences of engineering solutions
17 An ability to describe, analyze and design digital computing and representation systems. X
18 An ability to use appropriate computer engineering concepts and programming languages in solving computing problems. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 5 10
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 120