ECTS - Systems Software Validation and Testing
Systems Software Validation and Testing (SE344) Course Detail
| Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
|---|---|---|---|---|---|---|---|
| Systems Software Validation and Testing | SE344 | 6. Semester | 2 | 2 | 0 | 3 | 6 |
| Pre-requisite Course(s) |
|---|
| N/A |
| Course Language | English |
|---|---|
| Course Type | Compulsory Departmental Courses |
| Course Level | Bachelor’s Degree (First Cycle) |
| Mode of Delivery | Face To Face |
| Learning and Teaching Strategies | Lecture. |
| Course Lecturer(s) |
|
| Course Objectives | The objective of this course is to introduce the fundamental principles and practices essential for ensuring the quality and reliability of software systems. Through a combination of theoretical concepts and practical exercises, students will learn to design, implement, and execute various testing strategies to detect and rectify defects in software applications. |
| Course Learning Outcomes |
The students who succeeded in this course;
|
| Course Content | Software testing and its essentials, risk management, verification and validation, static V&V techniques and their comparison, software testing strategy and techniques, software testing tools, configuration management, software measurement and metrics related with testing. |
Weekly Subjects and Releated Preparation Studies
| Week | Subjects | Preparation |
|---|---|---|
| 1 | Giriş ve bilgilendirme | Lecture Notes |
| 2 | Basic Concepts | Ch1 |
| 3 | Basic Concepts | Ch1 |
| 4 | Unit Testing | Ch3 |
| 5 | Control Flow Testing | Ch4 |
| 6 | Control Flow Testing | Ch4 |
| 7 | Data Flow Testing | Ch5 |
| 8 | Midterm Exam | |
| 9 | Data Flow Testing | Ch5 |
| 10 | Integration Testing | Ch7 |
| 11 | System Testing Categories | Ch8 |
| 12 | Functional Testing | Ch9 |
| 13 | Functional Testing | Ch9 |
| 14 | Test Metrics | Lecture notes |
| 15 | Final Examination Period | Review of topics |
| 16 | Final Examination Period | Review of topics |
Sources
| Course Book | 1. Practical Software Testing, A. Yazıcı, S. Nazlıoğlu, T. Üstünkök, Ö. Tekin, Z. Y. Oğuz, Atılım Publications, 2022 |
|---|---|
| 2. K. Naik & P. Tripathy, “Software Testing & Quality Assurance: Theory and Practice”, John-Wiley, 2008. | |
| Other Sources | 3. Software Testing, Yogesh Singh, Cambridge University Press, 2012, ISBN 978-1-107-01296-7 |
| 4. Software Testing Foundations, Andreas Spillner, Tilo Linz & Hans Schaefer, Rockynook, 4th Ed., 2012, ISBN: 978-1-937538-42-2 | |
| 5. Software Testing In The Real World: Improving The Process by Edward Kit, 1995, ISBN-10: 0-201-87756-2; ISBN-13: 978-0-201-87756-4 |
Evaluation System
| Requirements | Number | Percentage of Grade |
|---|---|---|
| Attendance/Participation | - | - |
| Laboratory | 2 | 30 |
| Application | - | - |
| Field Work | - | - |
| Special Course Internship | - | - |
| Quizzes/Studio Critics | - | - |
| Homework Assignments | - | - |
| Presentation | - | - |
| Project | - | - |
| Report | - | - |
| Seminar | - | - |
| Midterms Exams/Midterms Jury | 1 | 30 |
| Final Exam/Final Jury | 1 | 40 |
| Toplam | 4 | 100 |
| Percentage of Semester Work | 70 |
|---|---|
| Percentage of Final Work | 30 |
| Total | 100 |
Course Category
| Core Courses | X |
|---|---|
| Major Area Courses | |
| Supportive Courses | |
| Media and Managment Skills Courses | |
| Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
| # | Program Qualifications / Competencies | Level of Contribution | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
| 2 | Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. | |||||
| 3 | Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. | |||||
| 4 | Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. | X | ||||
| 5 | Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline. | |||||
| 6 | Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering. | X | ||||
| 7 | Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions. | |||||
| 8 | Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions. | |||||
| 9 | Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself. | |||||
| 10 | Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities. | X | ||||
| 11 | Knows the standards used in software engineering practices. | |||||
| 12 | Knows about business practices such as project management, risk management and change management. | X | ||||
| 13 | Gains awareness about entrepreneurship and innovation. | |||||
| 14 | Gains knowledge on sustainable development. | |||||
| 15 | Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering. | |||||
| 16 | Acquires awareness of the legal consequences of engineering solutions. | |||||
| 17 | Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. | |||||
| 18 | Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes. | X | ||||
ECTS/Workload Table
| Activities | Number | Duration (Hours) | Total Workload |
|---|---|---|---|
| Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
| Laboratory | 10 | 2 | 20 |
| Application | |||
| Special Course Internship | |||
| Field Work | |||
| Study Hours Out of Class | 16 | 3 | 48 |
| Presentation/Seminar Prepration | |||
| Project | |||
| Report | |||
| Homework Assignments | |||
| Quizzes/Studio Critics | |||
| Prepration of Midterm Exams/Midterm Jury | 1 | 7 | 7 |
| Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
| Total Workload | 154 | ||
