ECTS - Systems Software Validation and Testing
Systems Software Validation and Testing (SE344) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Systems Software Validation and Testing | SE344 | 6. Semester | 2 | 2 | 0 | 3 | 6 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Compulsory Departmental Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture. |
Course Lecturer(s) |
|
Course Objectives | The objective of this course is to introduce the fundamental principles and practices essential for ensuring the quality and reliability of software systems. Through a combination of theoretical concepts and practical exercises, students will learn to design, implement, and execute various testing strategies to detect and rectify defects in software applications. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Software testing and its essentials, risk management, verification and validation, static V&V techniques and their comparison, software testing strategy and techniques, software testing tools, configuration management, software measurement and metrics related with testing. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Giriş ve bilgilendirme | Lecture Notes |
2 | Basic Concepts | Ch1 |
3 | Basic Concepts | Ch1 |
4 | Unit Testing | Ch3 |
5 | Control Flow Testing | Ch4 |
6 | Control Flow Testing | Ch4 |
7 | Data Flow Testing | Ch5 |
8 | Midterm Exam | |
9 | Data Flow Testing | Ch5 |
10 | Integration Testing | Ch7 |
11 | System Testing Categories | Ch8 |
12 | Functional Testing | Ch9 |
13 | Functional Testing | Ch9 |
14 | Test Metrics | Lecture notes |
15 | Final Examination Period | Review of topics |
16 | Final Examination Period | Review of topics |
Sources
Course Book | 1. Practical Software Testing, A. Yazıcı, S. Nazlıoğlu, T. Üstünkök, Ö. Tekin, Z. Y. Oğuz, Atılım Publications, 2022 |
---|---|
2. K. Naik & P. Tripathy, “Software Testing & Quality Assurance: Theory and Practice”, John-Wiley, 2008. | |
Other Sources | 3. Software Testing, Yogesh Singh, Cambridge University Press, 2012, ISBN 978-1-107-01296-7 |
4. Software Testing Foundations, Andreas Spillner, Tilo Linz & Hans Schaefer, Rockynook, 4th Ed., 2012, ISBN: 978-1-937538-42-2 | |
5. Software Testing In The Real World: Improving The Process by Edward Kit, 1995, ISBN-10: 0-201-87756-2; ISBN-13: 978-0-201-87756-4 |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | 2 | 30 |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | - | - |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 4 | 100 |
Percentage of Semester Work | 70 |
---|---|
Percentage of Final Work | 30 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. | |||||
2 | Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. | |||||
3 | Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. | |||||
4 | Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. | X | ||||
5 | Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline. | |||||
6 | Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering. | X | ||||
7 | Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions. | |||||
8 | Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions. | |||||
9 | Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself. | |||||
10 | Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities. | X | ||||
11 | Knows the standards used in software engineering practices. | |||||
12 | Knows about business practices such as project management, risk management and change management. | X | ||||
13 | Gains awareness about entrepreneurship and innovation. | |||||
14 | Gains knowledge on sustainable development. | |||||
15 | Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering. | |||||
16 | Acquires awareness of the legal consequences of engineering solutions. | |||||
17 | Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. | |||||
18 | Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes. | X |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 4 | 64 |
Laboratory | 10 | 2 | 20 |
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 3 | 48 |
Presentation/Seminar Prepration | |||
Project | |||
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 7 | 7 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 154 |