ECTS - Object-Oriented Analysis and Design

Object-Oriented Analysis and Design (SE321) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Object-Oriented Analysis and Design SE321 5. Semester 3 0 0 3 7
Pre-requisite Course(s)
(CMPE225 veya CMPE102)
Course Language English
Course Type Compulsory Departmental Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to provide students to gain knowledge and skills to perform object-oriented software analysis and design.
Course Learning Outcomes The students who succeeded in this course;
  • Understand and recognize the basic concepts and principles of object oriented analysis
  • Understand and recognize the basic concepts and principles of object oriented design
  • Use object-oriented analysis and design techniques to document and construct object oriented software
Course Content Fundamentals of object-orientation, object-oriented (OO) modeling using UML, Experimentation in OO analysis: identification of use cases and objects, experimentation in OO design: class hierarchies, implementation in OO programming, design pattern (overview), case study to reinforce the underlying concepts.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Information Systems-What are they? Chapter 1
2 Challenges in IS Development Meeting the Challenges Chapter 2 Chapter 3
3 Fundamentals of Object-orientation Chapter 4
4 Modeling Concepts Chapter 5. Chapter A1.
5 Requirement Elicitation Chapter 6 Chapter A2
6 Requirement Modeling Chapter 7 Chapter A3
7 Refining Requirement Modeling Chapter 8
8 Object Interaction Chapter 9
9 Specifying Operations, Specifying Control Chapter 10, 11, Chapter A4
10 System Architecture Chapter 12
11 System Design Chapter 13, Chapter A5
12 Detailed Design Chapter 14
13 Design Patterns Chapter 15
14 Final Examination Period Review of topics
15 Final Examination Period Review of topics

Sources

Course Book 1. Object Oriented Systems Analysis and Design using UML, Simon Bennett, Steve McRobb, Ray Farmer, 3/e, MacGraw Hill, 2005
Other Sources 2. Larman, C. (2004). Applying UML and patterns: an introduction to object oriented analysis and design and the unified process (3rd Edition), Prentice Hall
3. Robert V. Stumpf, Lavette C. Teague, Object Oriented Systems Analysis and Design With UML, 1/e, Prentice Hall, 2005.
4. Richard C. Lee, William M. Tepfenhart, UML and C++: A Practical Guide to Object-Oriented Development, 2nd Edition, Prentice Hall, 2001.
5. Martin fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd Edition, Addison Wesley, 2004.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 40
Toplam 3 95
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. X
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. X
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. X
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline.
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering. X
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself.
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities.
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management.
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering.
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. X
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 3 48
Presentation/Seminar Prepration
Project 1 25 25
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 20 20
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 171