Software Patterns (SE461) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Software Patterns SE461 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Technical Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to introduce effective methods of design issues for high quality software systems. It also aims at teaching refactoring concepts.
Course Learning Outcomes The students who succeeded in this course;
  • Recognize and define common design patterns
  • Identify appropriate patterns for design problems
  • Apply refactoring to poorly designed software by using design patterns
  • Create code implementations of design patterns
  • Discuss implementation trade-offs of certain patterns with respect to others
Course Content Introduction to design patterns, creational patterns, structural patterns, behavioural patterns, analysis patterns, architectural patterns, testing, refactoring.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Overview of Object-oriented design Lecture Notes
2 Overview of UML Lecture Notes
3 Introduction to design patterns Chapter 1
4 Observer Pattern Chapter 2
5 Decorator Pattern Chapter 3
6 Factory Method and Abstract Factory Pattern Chapter 4
7 Singleton Pattern Chapter 5
8 Command Pattern Chapter 6
9 Adapter and Façade Patterns Chapter 7
10 Template Method Pattern Chapter 8
11 Iterator and Composite Pattern Chapter 9
12 State Pattern Chapter 10
13 Proxy Pattern Chapter 11
14 Compound Patterns and MVC Chapter 12
15 Antipatterns Lecture Notes
16 Refactoring Lecture Notes
17 Final Exam

Sources

Course Book 1. Head First Design Patterns, O’Reilly, Eric Freeman, Elisabeth Freeman, Kathy Sierra, Bert Bates, First Edition October 2004
Other Sources 2. Design Patterns: Elements of Reusable Object Oriented Software, E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Addison -Wesley Professional, 1995
3. Analysis Patterns: Reusable Object Models, Martin Fowler, (1996-11-27). Addison-Wesley
4. Pattern-Oriented Software Architecture: A System of Patterns, Buschmann F., Meunier R., Rohnert H. & Sommerlad P. & Stal M. (1996), John Wiley & Sons
5. Applying UML and Patterns : An Introduction to Object-Oriented Analysis and Design and Iterative Development, Craig Larman, 3rd Edition, Prentice Hall, 2005
6. Joshua Kerievsky, Refactoring to Patterns, Addison-Weslay Professional, 2004.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 4 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 6 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains adequate knowledge in mathematics, science, and subjects specific to the software engineering discipline; acquires the ability to apply theoretical and practical knowledge of these areas to complex engineering problems. X
2 Gains the ability to identify, define, formulate, and solve complex engineering problems; selects and applies proper analysis and modeling techniques for this purpose. X
3 Develops the ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. X
4 Demonstrates the ability to select, and utilize modern techniques and tools essential for the analysis and determination of complex problems in software engineering applications; uses information technologies effectively. X
5 Develops the ability to design experiments, gather data, analyze, and interpret results for the investigation of complex engineering problems or research topics specific to the software engineering discipline. X
6 Demonstrates the ability to work effectively both individually and in disciplinary and interdisciplinary teams in fields related to software engineering. X
7 Demonstrates the ability to communicate effectively in Turkish, both orally and in writing; to write effective reports and understand written reports, to prepare design and production reports, to deliver effective presentations, and to give and receive clear and understandable instructions.
8 Gains knowledge of at least one foreign language; acquires the ability to write effective reports and understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear and understandable instructions.
9 Acquires an awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously improve oneself. X
10 Acts in accordance with ethical principles and possesses knowledge of professional and ethical responsibilities. X
11 Knows the standards used in software engineering practices.
12 Knows about business practices such as project management, risk management and change management. X
13 Gains awareness about entrepreneurship and innovation.
14 Gains knowledge on sustainable development.
15 Has knowledge about the universal and societal impacts of software engineering practices on health, environment, and safety, as well as the contemporary issues reflected in the field of engineering. X
16 Acquires awareness of the legal consequences of engineering solutions.
17 Applies knowledge and skills in identifying user needs, developing user-focused solutions and improving user experience. X
18 Gains the ability to apply engineering approaches in the development of software systems by carrying out analysis, design, implementation, verification, validation, and maintenance processes. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 4 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 111