ECTS - Production Systems
Production Systems (IE509) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Production Systems | IE509 | General Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
N/A |
Course Language | English |
---|---|
Course Type | Free Elective |
Course Level | Social Sciences Master's Degree |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Question and Answer, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | This course is designed to enable students to become aware of major production planning concerns and decision chains, fundamental problem areas in production planning and control, planning hierarchy and the relations with the management activities. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Management and control of production function in organizational systems, concepts of materials management, master production scheduling and production planning from different perspectives, aggregate planning, lot sizing, scheduling in manufacturing systems, scheduling in service systems, design and operation of scheduling systems, material requirem |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Typical features of production planning problems. Decision making in production planning. Short-term, medium-term, and long-term planning. | |
2 | Overview of mathematical models and optimization tools | |
3 | Deterministic continuous review models with uniform demand. Quantity discount models. Multiple-item models. | |
4 | Stochastic reorder point models. Periodic review models. | |
5 | Lot-sizing models with dynamic demand. | |
6 | Dynamic Programming approach. Wagner-Whitin principle for lot-sizing decisions. | |
7 | Zangwill’s extension to models which include backlogging. | |
8 | Aggregate planning. LP models for aggregate planning. Transportation Model approach to production planning problems. | |
9 | Minimum cost flow network models for production planning. Non-linear cost functions. | |
10 | Midterm | |
11 | Overview of deterministic vs. stochastic and static vs. dynamic models of scheduling. Integer programming models of single machine problems, algorithms and heuristics. | |
12 | Parallel machine models. Deterministic flow-shop and job-shop models. | |
13 | Assembly-line balancing: formulation and heuristics. | |
14 | Issues of computational complexity | |
15 | Final Examination Period | |
16 | Final Examination Period |
Sources
Course Book | 1. L.A. Johnson and D.C. Montgomery, Operations Research in Production Planning, Scheduling, and Inventory Control, John Wiley & Sons 1974. |
---|---|
Other Sources | 2. E.A. Silver, D.F. Pyke, R. Peterson, Inventory Management and Production Planning and Scheduling, 3rd edition, Wiley 1998. |
3. D. Sipper and R.L. Bulfin Jr., Production: Planning, Control and Integration, McGraw Hill, 1997. | |
4. M. Pinedo, Scheduling: Theory, Algorithms and Systems, 2nd edition, Prentice-Hall, 2002. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | 1 | 30 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 1 | 30 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 3 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | |
---|---|
Major Area Courses | |
Supportive Courses | X |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Integrates the knowledge acquired in their undergraduate field with business administration and uses them in conjunction. | X | ||||
2 | Possesses knowledge of research methods and techniques and is able to apply them. | |||||
3 | Produces creative and constructive solutions in cases of uncertainty and complexity in the field of business administration. | |||||
4 | Comprehends the fundamental concepts and core functions of business administration at an advanced level. | X | ||||
5 | Plans and manages activities aimed at the professional development of subordinates in projects and professional activities within their field. | |||||
6 | Generates innovative and creative ideas and is able to implement them. | |||||
7 | Independently carries out a study using their knowledge in the field of business administration and takes responsibility as a team member in collaboration with other professional groups in the field. | |||||
8 | Has the ability to access scientific knowledge in business administration, follow current literature, critically evaluate and apply it. | |||||
9 | Communicates knowledge related to the field of business effectively by using verbal, written, and visual communication methods in both the language of instruction and professional English. | |||||
10 | Demonstrates awareness of professional ethics, environmental sensitivity, sustainability, social responsibility, and cultural, societal, and universal values. | |||||
11 | Works effectively in interdisciplinary and multicultural teams, takes responsibility, performs risk analysis, adapts to change, thinks critically, and takes initiative in problem-solving. | |||||
12 | . |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 16 | 1 | 16 |
Presentation/Seminar Prepration | |||
Project | 1 | 4 | 4 |
Report | |||
Homework Assignments | 4 | 4 | 16 |
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 1 | 16 | 16 |
Prepration of Final Exams/Final Jury | 1 | 25 | 25 |
Total Workload | 125 |