Forecasting (IE519) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Forecasting IE519 General Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Free Elective
Course Level Social Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives In this course, the students will be learning the role of forecasting in engineering design.
Course Learning Outcomes The students who succeeded in this course;
  • Acquaintance of students with the fundamental concepts of forecasting in engineering projects.
  • Ability of students to develop an insight about the role of forecasting for the industrial world.
  • Ability of students to evaluate and solve real life processes and problems using a forecasting model.
Course Content Forecasting methodology and techniques; dynamic Bayesian modelling; methodological forecasting and analysis; polynomial, seasonal, harmonic and regression systems; superpositioning; variance learning; forecast monitoring and applications; time series analysis and forecasting; moving averages; estimation and forecasting for arma models; arma models;

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Forecasting methodology and techniques
2 Forecasting methods versus Forecasting Systems; Dynamic Bayesian Modelling;
3 Methodological Forecasting and Analysis
4 Polynomial, Seasonal, Harmonic and Regression Systems
5 Superpositioning
6 Variance Learning; Forecast Monitoring and applications;
7 Time Series Analysis and Forecasting; Moving Averages
8 Estimation and Forecasting for ARMA models;
9 ARIMA models
10 Seasonal and Non Seasonal Box-Jenkins Models
11 Midterm
12 Winters’ Exponential Smoothing
13 Decomposition Models
14 Other possible methods
15 Real world applications
16 Final Examination Period

Sources

Course Book 1. Makridakis S.G., Wheelright S.C., Hyndman R.J., Forecasting: Methods and Applications, Wiley, 1997.
Other Sources 2. Montgomery, D.C., and Runger, G.C., Applied Statistics and Probability for Engineers, John Wiley and Sons, Inc., 4th Edition, June 2006.
3. Milton, J.S. and Arnold, J.C., Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, McGraw-Hill, 4th edition, 2002.
4. Ross, S. Introduction to Probability and Statistics for Engineers and Scientists, Academic Press, 3rd edition, 2004.
5. Triola, M.F., Essentials of Statistics, Addison Wesley,2nd edition, 2004.
6. Hines, W.W. and Montgomery,D.A., Probability and Statistics in Engineering and Management Science, John Wiley,1990.
7. Navidi,W. Statistics for Engineers and Scientists, McGraw-Hill, 2008.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses X
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Integrates the knowledge acquired in their undergraduate field with business administration and uses them in conjunction.
2 Possesses knowledge of research methods and techniques and is able to apply them.
3 Produces creative and constructive solutions in cases of uncertainty and complexity in the field of business administration.
4 Comprehends the fundamental concepts and core functions of business administration at an advanced level.
5 Plans and manages activities aimed at the professional development of subordinates in projects and professional activities within their field.
6 Generates innovative and creative ideas and is able to implement them.
7 Independently carries out a study using their knowledge in the field of business administration and takes responsibility as a team member in collaboration with other professional groups in the field.
8 Has the ability to access scientific knowledge in business administration, follow current literature, critically evaluate and apply it.
9 Communicates knowledge related to the field of business effectively by using verbal, written, and visual communication methods in both the language of instruction and professional English.
10 Demonstrates awareness of professional ethics, environmental sensitivity, sustainability, social responsibility, and cultural, societal, and universal values.
11 Works effectively in interdisciplinary and multicultural teams, takes responsibility, performs risk analysis, adapts to change, thinks critically, and takes initiative in problem-solving.
12 .

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 4 4
Report
Homework Assignments 4 4 16
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 16 16
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125